Quality Indicator Empirical Methods,
v2023

Prepared for:
Agency for Healthcare Research and Quality
U.S. Department of Health and Human Services
5600 Fishers Lane
Rockville, MD 20857
http://www.qualityindicators.ahrq.gov

Contract No. HHSA290201800003G

September 2023
Table of Contents

Acknowledgments .. 1

Abbreviations and Terms Used in this Document ... 3

Chapter I. Background and Overview ... 5
 A. Background on Agency for Healthcare Research and Quality (AHRQ) Quality Indicators (QIs) ... 5
 B. AHRQ QI Results: Counts, Rates, and Scores .. 6
 C. Brief History of the AHRQ QIs ... 8
 D. Overview of the Empirical Methods Document .. 9

Chapter II. AHRQ QIs Modules and Methods ... 10
 A. AHRQ QI Modules ... 10
 B. Specifications .. 16
 C. Data .. 17
 D. Patient Population .. 17
 E. Area-Level Quality Indicators ... 20
 F. Hospital-Level Quality Indicators ... 27
 G. Recommendations on How to Report Trends ... 40

Chapter III. Empirical Development of the AHRQ QIs ... 42
 A. Overview of the Development Process .. 42
 B. Discharge Reference Population ... 44
 C. Other Data Used for Area-Level Indicator Development ... 48
 D. Coding Updates ... 49
 E. Reference Population: Numerators, Denominators, and Observed Rates 51
 F. Reference Population: Risk Model Development and Parameter Estimates (v2023) 51
 G. Composite Development ... 61

Chapter IV. References .. 68

Chapter V. Appendices ... 70
 Appendix A. Other Helpful Documents ... 70
 Appendix B. Comprehensive List of Quality Indicators ... 73
 Appendix C. List of Risk Factors for Area-Level Quality Indicator Modules Appendix 78
 Appendix D. Patient Harms Captured in the AHRQ Patient Safety and Adverse Events Composite... 79
Index of Tables

Table 1. Quality Indicator Empirical Methods Abbreviations .. 3
Table 2. Quality Domains Addressed by Area-Level and Hospital-Level Modules 6
Table 3. List of AHRQ Prevention Quality Indicators (PQIs) .. 10
Table 4. List of AHRQ Prevention Quality Emergency Department Indicators (PQEs) 12
Table 5. List of AHRQ Inpatient Quality Indicators (IQIs) .. 13
Table 6. List of AHRQ Patient Safety Indicators (PSIs) ... 14
Table 7. List of AHRQ Pediatric Quality Indicators (PDIs) ... 16
Table 8. Analysis Data Inclusion Rule ... 17
Table 9. Age Groups and Indicators ... 18
Table 10. Values for the Present-on-Admission Data Element ... 20
Table 11. AHRQ QI Risk Adjustment Covariates for Hospital-Level Indicators 31
Table 12. AHRQ QI Composite and Weight ... 37
Table 13. AHRQ QI Specification Releases ... 43
Table 14. AHRQ QI Reference Population ... 45
Table 15. Treatment of State Border Crossing Discharges in the Reference Population 47
Table 16. AHRQ Hospital-Level Indicator Reference Population .. 48
Table 17. Weights of PSI 90 Component Indicators, v2023 ... 64
Acknowledgments

The Agency for Healthcare Research and Quality (AHRQ) Quality Indicators (QI) program uses the Healthcare Cost and Utilization Project (HCUP) State Inpatient Databases (SID) and State Emergency Department Databases (SEDD) for the development of the AHRQ QIs, using the databases as the reference (general or standard) population. HCUP is a family of healthcare databases and related software tools and products developed through a Federal-State-Industry partnership and sponsored by AHRQ. HCUP databases bring together the data collection efforts of State data organizations, hospital associations, private data organizations, and the Federal government to create a national information resource of encounter-level health care data. HCUP includes the largest collection of longitudinal hospital care data in the United States, with all-payer, encounter-level information beginning in 1988. These databases enable research on a broad range of health policy issues, including cost and quality of health services, medical practice patterns, access to health care programs, and outcomes of treatments at the national, State, and local market levels. The HCUP SID encompass about 97 percent of all annual inpatient discharges in the United States. The SEDD capture emergency visits at hospital-owned emergency departments (EDs) that do not result in hospitalization.

The AHRQ QI program would like to acknowledge the [HCUP Partner organizations](#) that participated in the HCUP SID and SEDD:

- **Alaska** Department of Health
- **Alaska** Hospital and Healthcare Association
- **Arizona** Department of Health Services
- **Arkansas** Department of Health
- **California** Department of Health Care Access and Information (HCAI)
- **Colorado** Hospital Association
- **Connecticut** Hospital Association
- **Delaware** Division of Public Health
- **District of Columbia** Hospital Association
- **Florida** Agency for Health Care Administration
- **Georgia** Hospital Association
- **Hawaii** Laulima Data Alliance
- **Hawaii** University of Hawaii at Hilo
- **Illinois** Department of Public Health
- **Indiana** Hospital Association
- **Iowa** Hospital Association
- **Kansas** Hospital Association
- **Kentucky** Cabinet for Health and Family Services
- **Louisiana** Department of Health
- **Maine** Health Data Organization
- **Maryland** Health Services Cost Review Commission
- **Massachusetts** Center for Health Information and Analysis
- **Michigan** Health & Hospital Association
- **Minnesota** Hospital Association
- **Mississippi** State Department of Health
- **Missouri** Hospital Industry Data Institute

Montana Hospital Association
Nebraska Hospital Association
Nevada Department of Health and Human Services
New Hampshire Department of Health & Human Services
New Jersey Department of Health
New Mexico Department of Health
New York State Department of Health
North Carolina Department of Health and Human Services
North Dakota (data provided by the Minnesota Hospital Association)
Ohio Hospital Association
Oklahoma State Department of Health
Oregon Association of Hospitals and Health Systems
Oregon Health Authority
Pennsylvania Health Care Cost Containment Council
Rhode Island Department of Health
South Carolina Revenue and Fiscal Affairs Office
South Dakota Association of Healthcare Organizations
Tennessee Hospital Association
Texas Department of State Health Services
Utah Department of Health
Vermont Association of Hospitals and Health Systems
Virginia Health Information
Washington State Department of Health
West Virginia Department of Health and Human Resources
Wisconsin Department of Health Services
Wyoming Hospital Association

For more information on HCUP, visit https://www.hcup-us.ahrq.gov
Abbreviations and Terms Used in this Document

Table 1. Quality Indicator Empirical Methods Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation/Term</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>Abdominal Aortic Aneurysm</td>
</tr>
<tr>
<td>AHA</td>
<td>American Hospital Association</td>
</tr>
<tr>
<td>AHRQ</td>
<td>Agency for Healthcare Research and Quality</td>
</tr>
<tr>
<td>AMI</td>
<td>Acute Myocardial Infarction</td>
</tr>
<tr>
<td>APR-DRG</td>
<td>All Patient Refined Diagnosis Related Groups</td>
</tr>
<tr>
<td>ATT</td>
<td>Average Treatment effect on the Treated</td>
</tr>
<tr>
<td>CABG</td>
<td>Coronary Artery Bypass Graft</td>
</tr>
<tr>
<td>CCSR</td>
<td>Clinical Classifications Software Refined</td>
</tr>
<tr>
<td>CMS</td>
<td>Centers for Medicare and Medicaid Services</td>
</tr>
<tr>
<td>COPD</td>
<td>Chronic Obstructive Pulmonary Disease</td>
</tr>
<tr>
<td>DNR</td>
<td>Do Not Resuscitate</td>
</tr>
<tr>
<td>DRGs</td>
<td>Diagnosis Related Groups</td>
</tr>
<tr>
<td>DVT</td>
<td>Deep Vein Thrombosis</td>
</tr>
<tr>
<td>ECMO</td>
<td>Extracorporeal Membrane Oxygenation</td>
</tr>
<tr>
<td>ED PQI</td>
<td>Emergency Department Prevention Quality Indicators</td>
</tr>
<tr>
<td>FIPS</td>
<td>Federal Information Processing Standards</td>
</tr>
<tr>
<td>FSCPE</td>
<td>Federal State Cooperative Program for Population Estimates</td>
</tr>
<tr>
<td>FY</td>
<td>Fiscal Year</td>
</tr>
<tr>
<td>HCUP</td>
<td>Healthcare Cost and Utilization Project</td>
</tr>
<tr>
<td>ICD-9-CM</td>
<td>International Classification of Diseases Volume 9 Clinical Modification</td>
</tr>
<tr>
<td>ICD-10-CM/PCS</td>
<td>International Classification of Diseases Volume 10 Clinical Modification or Procedure Code System</td>
</tr>
<tr>
<td>IQI</td>
<td>Inpatient Quality Indicator</td>
</tr>
<tr>
<td>LASSO</td>
<td>Least Absolute Shrinkage and Selection Operator</td>
</tr>
<tr>
<td>LTAC</td>
<td>Long-Term Acute Care</td>
</tr>
<tr>
<td>MDC</td>
<td>Major Diagnostic Category</td>
</tr>
<tr>
<td>Abbreviation/Term</td>
<td>Descriptions</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>MS-DRG</td>
<td>Medicare Severity Diagnostic Related Group</td>
</tr>
<tr>
<td>MDRG</td>
<td>Modified Medicare Severity Diagnosis Related Group</td>
</tr>
<tr>
<td>NCHS</td>
<td>National Center for Health Statistics</td>
</tr>
<tr>
<td>CBE</td>
<td>Consensus-Based Entity</td>
</tr>
<tr>
<td>NQF</td>
<td>National Quality Forum</td>
</tr>
<tr>
<td>NQI</td>
<td>Neonatal Quality Indicator</td>
</tr>
<tr>
<td>NUBC</td>
<td>National Uniform Bill Committee</td>
</tr>
<tr>
<td>O-E</td>
<td>Observed-to-Expected</td>
</tr>
<tr>
<td>OR</td>
<td>Operating Room</td>
</tr>
<tr>
<td>PCI</td>
<td>Percutaneous Coronary Intervention</td>
</tr>
<tr>
<td>PDI</td>
<td>Pediatric Quality Indicator</td>
</tr>
<tr>
<td>PE</td>
<td>Pulmonary Embolism</td>
</tr>
<tr>
<td>POA</td>
<td>Present on Admission</td>
</tr>
<tr>
<td>POVCAT</td>
<td>Poverty Decile</td>
</tr>
<tr>
<td>PQE</td>
<td>Prevention Quality Emergency Department Indicator</td>
</tr>
<tr>
<td>PQI</td>
<td>Prevention Quality Indicator</td>
</tr>
<tr>
<td>PSI</td>
<td>Patient Safety Indicator</td>
</tr>
<tr>
<td>PS</td>
<td>Propensity Score</td>
</tr>
<tr>
<td>QI</td>
<td>Quality Indicator</td>
</tr>
<tr>
<td>ROC</td>
<td>Receiver Operating Characteristic</td>
</tr>
<tr>
<td>ROM</td>
<td>Risk of Mortality</td>
</tr>
<tr>
<td>SAF</td>
<td>Standard Analytical Files</td>
</tr>
<tr>
<td>SAIPE</td>
<td>Census Bureau Small Area Income and Poverty Estimates</td>
</tr>
<tr>
<td>SID</td>
<td>State Inpatient Databases</td>
</tr>
<tr>
<td>U.S.</td>
<td>United States</td>
</tr>
<tr>
<td>UB</td>
<td>Uniform Bill</td>
</tr>
<tr>
<td>VBAC</td>
<td>Vaginal Birth After Cesarean</td>
</tr>
<tr>
<td>VIF</td>
<td>Variance Inflation Factor</td>
</tr>
</tbody>
</table>
Chapter I. Background and Overview

A. Background on Agency for Healthcare Research and Quality (AHRQ) Quality Indicators (QIs)

This document describes the empirical methods used to develop and calculate the Agency for Healthcare Research and Quality (AHRQ) Quality Indicators (QIs) v2023 (including risk adjustment and smoothing). Using administrative data (e.g., hospital discharge abstracts, billing records, or claims data), the AHRQ QIs measure health care quality and can be used to highlight potential quality concerns, identify areas that need further study and investigation, and track changes over time.

The AHRQ QIs measure quality and utilization at two different levels of analysis, the area level and the hospital level.\(^2\)

- **Area-level indicators** capture all cases of potentially preventable complications that occur in a given population resulting in hospitalization. For example, area-level indicators may answer the question: Was the inpatient admission for a condition that might have been avoided, if the patient’s area of the country had more or better preventive or outpatient care? As a practical matter, the default unit of analysis for the area-level AHRQ QIs is the county.

- **Hospital-level indicators** capture potentially preventable complications or adverse events following a medical condition or procedure or mortality following a medical condition or surgical procedure in which evidence suggests that high mortality may be associated with deficiencies in care. For example, hospital-level indicators may answer the question: Did the patient experience an adverse quality-related event while in the hospital? As a practical matter, the default unit of analysis for hospital-level AHRQ QIs is the hospital.

Moreover, the AHRQ QI modules capture various aspects of quality:

- **Prevention Quality Indicators (PQIs)** identify hospital admissions that might have been avoided given access to high-quality health care, preventive care, and health promoting resources within a community (first released November 2000, last updated August 2023).

- **Prevention Quality Emergency Department Indicators (PQEs)** identify emergency department visits that might have been avoided given access to high-quality health care, preventive care, and health promoting resources within a community (beta version last updated September 2023).

\(^2\) The hospital entity as defined by the data source may differ from the hospital entity as defined by the American Hospital Association (AHA). For example, a case where the data source treats two separate facilities as two hospitals, while the AHA Annual Survey treats the two facilities as a single hospital, or vice versa. For consistency across states, the Healthcare Cost and Utilization Project (HCUP) defines hospitals in accordance with AHA Annual Survey of Hospitals. During HCUP data processing, the data source's identification of the hospital is reconciled with the identification of the hospital in the AHA Annual Survey of Hospitals. For detailed information about this linking process, see the special report on HCUP Hospital Identifiers.
• **Inpatient Quality Indicators (IQIs)** reflect quality of care inside hospitals,\(^3\) including inpatient mortality for medical conditions and surgical procedures (first released May 2002, last updated August 2023).

• **Patient Safety Indicators (PSIs)** reflect quality of care inside hospitals, to focus on potentially avoidable complications and iatrogenic events (first released March 2003, last updated August 2023).

• **Pediatric Quality Indicators (PDIs) and Neonatal Quality Indicators (NQIs)** use indicators from the other three modules with adaptations to measure the access and quality of care for children and at-risk neonates (first released April 2006, last updated August 2023).

Table 2 summarizes the quality domains addressed by each module.

Table 2. Quality Domains Addressed by Area-Level and Hospital-Level Modules

<table>
<thead>
<tr>
<th>Domain</th>
<th>Area-Level Modules</th>
<th>Hospital-Level Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inpatient Quality</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Patient Safety</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Prevention Quality</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Pediatric Quality – Inpatient Quality</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Pediatric Quality – Patient Safety</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Pediatric Quality – Prevention Quality</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

B. AHRQ QI Results: Counts, Rates, and Scores

Most of the AHRQ QIs are ratios or rates in which the numerator is a count of hospitalizations with the condition or outcome of interest and the denominator is an estimate of the number of people (or hospitalizations) at risk for that outcome over a period of time.\(^4\)

AHRQ QI observed rates are derived for the entire United States (U.S.) (called the reference population) and for individual areas of the country or hospitals. The observed rates may vary between areas or hospitals due to a number of factors. Some areas and hospitals may provide exemplary care, while others provide sub-standard care. Some areas may serve people that are at higher risk for complications or exacerbations of their conditions, while others serve people that are at lower risk. Some hospitals may have sicker patients with more complex conditions, while others may have a lower-risk case mix.

In order to make meaningful comparisons about quality of care, the AHRQ QIs take into account underlying differences across areas or across hospitals that are unrelated to quality. The AHRQ QI technical specifications and methodology provide five different kinds of results, depending on whether comparisons are of interest for that particular indicator:

\(^3\) Area-level IQIs and PSIs were retired in v7.0, ICD-10-CM/PCS specifications and software. As of v7.0, the IQIs and PSIs do not reflect quality of care across geographic areas.

\(^4\) For v2023 software, the reference population for hospital level indicators uses three years of data and the reference population for area level indicators uses two years of data to address the challenges posed by the COVID-19 pandemic.
• **Volume/counts.** The indicator reports the number of times that a hospital reported an event, for example a retained surgical item or unretrieved device fragment (not present on admission). This volume, or count, indicator does not have denominators.

• **Observed rate.** Area-level rates are the number of hospitalizations for the condition of interest divided by the number of individuals who live in that area who are at risk for the condition. In contrast, hospital-level rates are the number of hospital stays in which the patient experienced the QI adverse event divided by the number of hospital stays for patients at risk for the event.

• **Expected rate.** A comparative rate that incorporates information about an external reference population that is not part of the user’s input dataset—that is, the rate that would be *predicted* if the expected level of care observed in the reference population and estimated with risk adjustment regression models were applied to the mix of patients with demographic and comorbidity distributions observed in the user’s dataset. The expected rate answers the question, “What rate of adverse events would we expect to see if this area or hospital provided the average level of care observed in the reference population, but provided it to the patients with the locally observed distribution of characteristics?” (i.e., average performance from the reference population of the universe of patients applied to locally observed mix of patients with their local risk profiles). When the observed rate is smaller than the expected rate (or the observed/expected ratio is < 1), then there is reason to think that the hospital (or area) is performing better than average on this indicator given the local patient case mix. The expected rate is calculated only for risk-adjusted indicators.

• **Risk-adjusted rate.** A comparative rate that incorporates information about the observed rate, expected rate, and a reference population that is not part of the input dataset. The risk-adjusted rate is the ratio of the observed rate and expected rate multiplied by the reference population observed rate. Therefore, it answers the same question as the ratio of the observed and expected: “How does the rate of adverse events for this hospital (or area) compare to the rate we would expect to see if it provided the average level of care observed in the reference population, but provided it to the patients with the locally observed distribution of characteristics?” If the risk-adjusted rate is higher than the reference rate, the hospital (or area) is performing worse than an average hospital or area in the reference population in providing care to patients with the locally observed distribution of characteristics.

• **Smoothed rate.** The smoothed rate is a weighted average of the reference population rate and the local (hospital or area) risk-adjusted rate. If the data from the individual hospital or area include many observations and provide a numerically stable estimate of the rate, then the smoothed rate will be very close to the risk-adjusted rate, and it will not be heavily influenced by the reference population rate. Conversely, the smoothed rate will be closer to the reference population rate if the hospital or area rate is based on a small number of observations and may not be numerically stable, especially from year to year. As a weighted average of the risk-adjusted rate from the user’s input dataset and the rate observed in the reference population discharges, the smoothed rate is calculated with a shrinkage estimator (1) to result in a rate near that from the user’s dataset if the hospital’s (or area’s) rate is estimated in a stable fashion with minimal noise or (2) to result in a rate near that of the reference population if the rate from the input dataset is unstable and based on noisy data. In practice, the smoothed rate brings rates toward the reference population mean (i.e., the rate among all discharges in the reference population) and does this more so for hospitals with lower volume (smaller denominators) and outliers (such as rural hospitals). Rates
for larger, high volume, hospitals will tend not to move much with smoothing, even if their risk-adjusted rates differ from the reference population rate.

- **Composite scores.** The composite QI scores combine information from multiple component QIs into a single summary index. There are two different methods used to construct composites in the AHRQ QI software. Area-level QI composites include PQIs 90, 91, 92, and 93 and PDIs 90, 91, and 92. The numerator of these composites is the sum (unweighted) of all hospital stays for the composite conditions of interest. A consistent denominator is used (e.g., population of adults age 18 years and older). In contrast, hospital-level composites (e.g., IQI 90 and 91, PSI 90) rely on a weighting scheme. They are calculated by first computing the smoothed rate for each component indicator and then computing a weighted average of the smoothed rates, where the weights are determined empirically using methods that differ by QI composite. All weighted composites use weights based on volume (either the numerator volume or denominator volume), except PSI 90 which uses weights based on volume and harm.

C. Brief History of the AHRQ QIs

The AHRQ QIs are measures of health care quality designed for use by program managers, researchers, and others at the Federal, State, and local levels interested in health care quality measurement. The AHRQ QIs provide health care decisionmakers with tools to assess their data, highlight potential quality concerns, identify areas that need further study and investigation, and track changes over time. The modules represent various aspects of quality: prevention (PQIs), inpatient care (IQIs), patient safety (PSIs), and pediatric care (PDIs). The AHRQ QIs are used in free software distributed by AHRQ; the software programs can be applied to hospital inpatient administrative data, which is readily available and relatively inexpensive to use.

The AHRQ QIs were originally developed at the request of Healthcare Cost and Utilization Project (HCUP) Partners in 1999 using evaluation methodologies developed in the AHRQ Evidence-based Practice Centers (EPC). Over the years several refinements have been made to the original indicators by incorporating risk adjustment and a reference population to improve the reliability and validity of the indicators. The PQIs were developed in 2002, the IQIs in 2002, the PSIs in 2003, and finally the PDIs in 2006 using ICD-9 CM codes. In 2012, several other enhancements were added such as present on admission (POA) criteria, laboratory values, and other key clinical values as well as to account for the conversion of AHRQ QIs to ICD-10-CM/PCS. Additional details about the development of each module are included below.

The AHRQ PQIs were developed in 2002 as measures of access to quality care within a community. They were based on constructs of "ambulatory care sensitive conditions" and "potentially preventable hospitalizations" that were empirically related to access measures or poverty. Between 2005 and the present day, the PQIs have been re-evaluated and refined by expert clinical panels, stakeholder and topic expert panels and through empirical analyses. As additional research informed the PQIs, the purpose of the module was expanded in collaboration with an expert panel in 2015 to include community-based factors that influence health along with access to quality care.

The AHRQ IQIs and PSIs were originally developed in 2002 and 2003, respectively, as measures of quality of clinical care at both the hospital level and across geographic areas. The indicators were developed with input from an expert panel which assessed each indicator for: face validity, precision, minimum bias (i.e., ability to risk adjust), construct validity, opportunity for quality improvement, and fit for the indicator set. Like AHRQ’s other quality indicator modules, the IQIs and PSIs were originally
intended for surveillance and quality improvement uses. Since their development, both IQIs and PSIs have been adopted into national reporting and payment programs. As such, both sets of measures have increasingly been used for the comparative assessment of hospital performance rather than internal quality improvement alone. To allow for fair comparisons, most measures are risk adjusted for case mix differences across hospitals and are reliability adjusted to account for differential signal strengths.

Another set of indicators, measured as visit rates from emergency department encounters, was developed between 2011 and 2015. The Emergency Department Prevention Quality Indicators (ED PQI) were intended to form a set of indicators complementary to the inpatient area indicators, that would also reflect the quality of primary care available through the health care system and its capacity to prevent hospital care. These measures were originally specified using ICD-9-CM diagnosis codes and regression methods similar to current area indicators but adopting a Poisson regression methodology. The Beta ED PQI v2023 release consists of five of the six ED PQI indicators (referred to as PQEs) originally specified. The indicator specifications have been revised using ICD-10-CM codes and the measures are estimated using the same risk and reliability adjustment approaches as other area indicators.

D. Overview of the Empirical Methods Document

In the remainder of this document, we describe the methods for calculation of AHRQ QI results from a user perspective (Chapter II), describe the underlying empirical development of the AHRQ QIs (Chapter III), and provide a list of the references used in the document (Chapter IV), as well as tables of the indicators (Chapter V). Please note that this document is intended to provide information on the methodology of the AHRQ QIs. There are complementary AHRQ QI Software Instruction documents on the AHRQ QI website (https://qualityindicators.ahrq.gov) that provide an overview of the software and details about data elements and programs used to calculate the AHRQ QIs (see Appendix A).
Chapter II. AHRQ QIs Modules and Methods

In this chapter, we provide a general description of each QI module and a list of indicators included in the module. We then describe the technical specifications that provide detailed information about each indicator, and the types of data and populations used to calculate QI rates. Finally, we describe the methods used to calculate the numerators, denominators, and observed, expected, risk-adjusted, and smoothed rates for the area-level and hospital-level QIs.

A. AHRQ QI Modules

A.1 Prevention Quality Indicators (PQIs)

The PQIs are a set of measures designed to capture access to quality of care and wellness (community health) of a population in a given region, by using hospital administrative data to identify rates of hospitalization for "ambulatory care sensitive conditions." These are conditions for which short and long-term access to quality care can potentially prevent hospitalization or for which early intervention can prevent complications or more severe disease. These measures are influenced by disease prevalence, environmental factors influencing physical health (poverty, housing, pollution, and food access) and health behaviors, and reflect access to care, including affordability, availability, timeliness, accessibility and understanding.

Even though these indicators are based on hospital inpatient data, they provide insight into the health of the community and the community-based health care system. For example, patients with diabetes may be hospitalized for diabetic complications if their conditions are not adequately monitored, if they do not receive the patient education needed for appropriate self-management, or if they do not have access to community resources that help promote self-management. These indicators identify hospital admissions that evidence suggests might have been avoided through access to high-quality outpatient or preventive care. The numerator is a count of admissions for the condition of interest, and the denominator is an estimate of the number of persons at risk for such a hospitalization.

The PQIs can be used as a "screening tool" to help flag potential health care access problems or concerns about population health and help public health agencies, State data organizations, health care systems, and others interested in improving health care quality in their communities to identify and investigate communities potentially in need of interventions.

Because the PQIs are calculated using readily available hospital administrative data, they are an easy-to-use and inexpensive screening tool. They can be used to provide a window into the community — to identify unmet community health care needs, to monitor the extent that complications from a number of common conditions are avoided in the community outpatient setting, and to compare performance of local health care systems across communities.

The PQI module contains a total of 14 indicators—10 primary indicators and four composite indicators (Table 3 and Appendix B.1).

Table 3. List of AHRQ Prevention Quality Indicators (PQIs)

<table>
<thead>
<tr>
<th>Abbrev</th>
<th>Indicator Name (v2023)</th>
<th>Area or Hospital Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQI 01</td>
<td>Diabetes Short-Term Complications Admission Rate</td>
<td>Area</td>
</tr>
</tbody>
</table>
Prevention Quality Emergency Department Indicators (PQEs)

The PQEs are a set of measures designed to capture access to quality of care and wellness (community health) of a population in a given region, by using hospital administrative data to identify rates of emergency department visits for "ambulatory care sensitive conditions." These are conditions for which short and long-term access to quality care can potentially prevent emergency department use or for which early intervention can prevent complications or more severe disease. These measures are influenced by disease prevalence, environmental factors influencing physical health (poverty, housing, pollution, and food access) and health behaviors, and reflect access to care, including affordability, availability, timeliness, accessibility and understanding.

Even though these indicators are based on hospital inpatient and emergency department data, they provide insight into the health of the community and the community-based health care system. For example, patients with diabetes may be admitted to the emergency department for diabetic complications if their conditions are not adequately monitored, if they do not receive the patient education needed for appropriate self-management, or if they do not have access to community resources that help promote self-management. Analogous to the inpatient PQIs, these indicators identify emergency department visits that might have been avoided through access to high-quality outpatient or preventive care. The numerator is a count of visits for the condition of interest, and the denominator is an estimate of the number of persons at risk for such an ED encounter.

The PQEs can be used as a "screening tool" to help flag potential health care access problems or concerns about population health and help public health agencies, State data organizations, health care systems, and
others interested in improving health care quality in their communities to identify and investigate communities potentially in need of interventions.

Because the PQEs are calculated using readily available hospital administrative data, they are an easy-to-use and inexpensive screening tool. Like the inpatient PQIs, they can be used to provide a window into the community — to identify unmet community health care needs, to monitor the extent that complications from a number of common conditions are avoided in the community outpatient setting, and to compare performance of local health care systems across communities.

The PQE module contains a total of 5 indicators. (Table 4 and Appendix B.1).

Table 4. List of AHRQ Prevention Quality Emergency Department Indicators (PQEs)

<table>
<thead>
<tr>
<th>Abbrev</th>
<th>Indicator Name (v2023)</th>
<th>Area or Hospital Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQE 01</td>
<td>Visits for Non-Traumatic Dental Conditions</td>
<td>Area</td>
</tr>
<tr>
<td>PQE 02</td>
<td>Visits for Chronic Ambulatory Care Sensitive Conditions</td>
<td>Area</td>
</tr>
<tr>
<td>PQE 03</td>
<td>Visits for Acute Ambulatory Care Sensitive Conditions</td>
<td>Area</td>
</tr>
<tr>
<td>PQE 04</td>
<td>Visits for Asthma</td>
<td>Area</td>
</tr>
<tr>
<td>PQE 05</td>
<td>Visits for Back Pain</td>
<td>Area</td>
</tr>
</tbody>
</table>

A.3 Inpatient Quality Indicators (IQIs)

The IQIs are a set of measures that provide a perspective on hospital quality of care using hospital administrative data. These indicators reflect quality of care inside hospitals and include inpatient mortality for certain procedures and medical conditions and utilization of procedures for which there are questions of overuse, underuse, and misuse.

The IQIs can be used to help hospitals identify potential problem areas that may need further study. The IQIs provide the opportunity to assess quality of care inside the hospital using administrative data found in the typical discharge record, and include two primary types of indicators: (1) mortality indicators for conditions or procedures — for which mortality can vary from hospital to hospital, and (2) utilization indicators for procedures — for which utilization varies across hospitals.

The IQI module contains a total of 17 indicators—15 primary indicators and two composite indicators (Table 5 and Appendix B.2). Most of the IQIs are based on surgical procedures and are reported at the hospital-level, although some are based on medical conditions. The IQIs are grouped into two categories, in-hospital mortality indicators and utilization indicators:

1. **In-hospital mortality indicators.** There are 12 in-hospital mortality indicators (three of which have stratum-specific specifications) and two composite indicators for surgical procedures and medical conditions that have been shown to have in-hospital mortality rates that vary substantially across hospitals and for which evidence suggests that high in-hospital mortality may

5 IQI 32 (Acute Myocardial Infarction [AMI] Mortality Rate, Without Transfer Cases) and IQI 34 (Vaginal Birth After Cesarean [VBAC] Rate) were retired in v2021 ICD-10-CM/PCS specifications and software.

6 Area-level IQIs were retired in v7.0 ICD-10-CM/PCS specifications and software.
be associated with deficiencies in the quality of care. These indicators are measured at the hospital-level. Six of these mortality indicators are for procedures. The other six mortality indicators are associated with medical conditions.

2. **Utilization indicators.** There are three utilization indicators for *surgical procedures* for which there are questions of overuse, underuse, or misuse. The usage of the procedures being examined varies significantly across hospitals, and high or low rates by themselves do not represent poor quality of care; rather, the information is intended to inform consumers about local practice patterns.

Table 5. List of AHRQ Inpatient Quality Indicators (IQIs)

<table>
<thead>
<tr>
<th>Abbrev</th>
<th>Indicator Name (v2023)</th>
<th>Procedure or Condition</th>
<th>Area or Hospital Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality Indicators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IQI 08</td>
<td>Esophageal Resection Mortality Rate</td>
<td>Procedure</td>
<td>Hospital</td>
</tr>
<tr>
<td>IQI 09a</td>
<td>Pancreatic Resection Mortality Rate</td>
<td>Procedure</td>
<td>Hospital</td>
</tr>
<tr>
<td>IQI 11a</td>
<td>Abdominal Aortic Aneurysm (AAA) Repair Mortality Rate</td>
<td>Procedure</td>
<td>Hospital</td>
</tr>
<tr>
<td>IQI 12</td>
<td>Coronary Artery Bypass Graft (CABG) Mortality Rate</td>
<td>Procedure</td>
<td>Hospital</td>
</tr>
<tr>
<td>IQI 15</td>
<td>Acute Myocardial Infarction (AMI) Mortality Rate</td>
<td>Condition</td>
<td>Hospital</td>
</tr>
<tr>
<td>IQI 16</td>
<td>Heart Failure Mortality Rate</td>
<td>Condition</td>
<td>Hospital</td>
</tr>
<tr>
<td>IQI 17a</td>
<td>Acute Stroke Mortality Rate</td>
<td>Condition</td>
<td>Hospital</td>
</tr>
<tr>
<td>IQI 18</td>
<td>Gastrointestinal Hemorrhage Mortality Rate</td>
<td>Condition</td>
<td>Hospital</td>
</tr>
<tr>
<td>IQI 19</td>
<td>Hip Fracture Mortality Rate</td>
<td>Condition</td>
<td>Hospital</td>
</tr>
<tr>
<td>IQI 20</td>
<td>Pneumonia Mortality Rate</td>
<td>Condition</td>
<td>Hospital</td>
</tr>
<tr>
<td>IQI 30</td>
<td>Percutaneous Coronary Intervention (PCI) Mortality Rate</td>
<td>Procedure</td>
<td>Hospital</td>
</tr>
<tr>
<td>IQI 31</td>
<td>Carotid Endarterectomy Mortality Rate</td>
<td>Procedure</td>
<td>Hospital</td>
</tr>
<tr>
<td>IQI 90</td>
<td>Mortality for Selected Inpatient Procedures</td>
<td>Procedure</td>
<td>Hospital</td>
</tr>
<tr>
<td>IQI 91</td>
<td>Mortality for Selected Inpatient Conditions</td>
<td>Condition</td>
<td>Hospital</td>
</tr>
<tr>
<td>Utilization Indicators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IQI 21</td>
<td>Cesarean Delivery Rate, Uncomplicated</td>
<td>Procedure</td>
<td>Hospital</td>
</tr>
<tr>
<td>IQI 22</td>
<td>Vaginal Birth After Cesarean (VBAC) Delivery Rate, Uncomplicated</td>
<td>Procedure</td>
<td>Hospital</td>
</tr>
<tr>
<td>IQI 33</td>
<td>Primary Cesarean Delivery Rate, Uncomplicated</td>
<td>Procedure</td>
<td>Hospital</td>
</tr>
</tbody>
</table>
A.4 Patient Safety Indicators (PSIs)

The PSIs are a set of indicators providing information on safety-related adverse events occurring in hospitals following operations, procedures, and childbirth. The PSIs use administrative data in the typical hospitalization discharge record to identify potential in-hospital complications. They can be used to help hospitals identify adverse events worthy of further study and to assess the incidence of such events for comparative purposes.\(^7\)

The PSI module contains a total of 18 indicators—16 primary indicators expressed as rates, one count measure, and one composite indicator (Table 6 and Appendix B.3).

There are 17 hospital-level PSIs for medical conditions and surgical procedures that have been shown to have complication/adverse event rates/counts that vary substantially across hospitals and for which evidence suggests that high complication/adverse event rates/counts may be associated with deficiencies in the quality of care. One of these 17 indicators is measured as the number of complication/adverse events and the other 16 indicators are measured as rates: the number of complications/adverse events divided by the number of discharges with the associated procedure or condition. The hospital-level indicators include only those cases where a secondary diagnosis code flags a potentially preventable complication. Eight of these indicators are for surgical discharges, six are for either medical or surgical discharges, and three are for obstetric discharges. In addition, there is one hospital-level composite that summarizes 10 different patient safety events.

Table 6. List of AHRQ Patient Safety Indicators (PSIs)

<table>
<thead>
<tr>
<th>Abbrev</th>
<th>Indicator Name (v2023)</th>
<th>Area or Hospital Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSI 02</td>
<td>Death Rate in Low-Mortality Diagnosis Related Groups (DRGs)</td>
<td>Hospital</td>
</tr>
<tr>
<td>PSI 03</td>
<td>Pressure Ulcer Rate</td>
<td>Hospital</td>
</tr>
<tr>
<td>PSI 04(^a)</td>
<td>Death Rate among Surgical Inpatients with Serious Treatable Complications</td>
<td>Hospital</td>
</tr>
<tr>
<td>PSI 05</td>
<td>Retained Surgical Item or Unretrieved Device Fragment Count</td>
<td>Hospital</td>
</tr>
<tr>
<td>PSI 06</td>
<td>Iatrogenic Pneumothorax Rate</td>
<td>Hospital</td>
</tr>
<tr>
<td>PSI 07</td>
<td>Central Venous Catheter-Related Blood Stream Infection Rate</td>
<td>Hospital</td>
</tr>
<tr>
<td>PSI 08</td>
<td>In-Hospital Fall-Associated Fracture Rate(^b)</td>
<td>Hospital</td>
</tr>
<tr>
<td>PSI 09</td>
<td>Postoperative Hemorrhage or Hematoma Rate(^c)</td>
<td>Hospital</td>
</tr>
<tr>
<td>PSI 10</td>
<td>Postoperative Acute Kidney Injury Requiring Dialysis Rate(^d)</td>
<td>Hospital</td>
</tr>
<tr>
<td>PSI 11</td>
<td>Postoperative Respiratory Failure Rate</td>
<td>Hospital</td>
</tr>
</tbody>
</table>

\(^7\) Area-level PSIs were retired in v7.0 ICD-10-CM/PCS specifications and software (https://qualityindicators.ahrq.gov/News/Retirement%20Notice_v2019_Indicators.pdf).

\(^a\) Includes stratum-specific indicators.
AHRQ Quality Indicators
Quality Indicator Empirical Methods, v2023

<table>
<thead>
<tr>
<th>Abbrev</th>
<th>Indicator Name (v2023)</th>
<th>Area or Hospital Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSI 12</td>
<td>Perioperative Pulmonary Embolism or Deep Vein Thrombosis Rate</td>
<td>Hospital</td>
</tr>
<tr>
<td>PSI 13</td>
<td>Postoperative Sepsis Rate</td>
<td>Hospital</td>
</tr>
<tr>
<td>PSI 14</td>
<td>Postoperative Wound Dehiscence Rate<sup>a</sup></td>
<td>Hospital</td>
</tr>
<tr>
<td>PSI 15</td>
<td>Abdominopelvic Accidental Puncture or Laceration Rate<sup>c, f</sup></td>
<td>Hospital</td>
</tr>
<tr>
<td>PSI 17</td>
<td>Birth Trauma Rate – Injury to Neonate<sup>g</sup></td>
<td>Hospital</td>
</tr>
<tr>
<td>PSI 18</td>
<td>Obstetric Trauma Rate – Vaginal Delivery with Instrument</td>
<td>Hospital</td>
</tr>
<tr>
<td>PSI 19</td>
<td>Obstetric Trauma Rate – Vaginal Delivery without Instrument</td>
<td>Hospital</td>
</tr>
<tr>
<td>PSI 90</td>
<td>Patient Safety and Adverse Events Composite<sup>b</sup></td>
<td>Hospital</td>
</tr>
</tbody>
</table>

^a Includes stratum-specific indicators
^b Previously entitled “Postoperative Hip Fracture” prior to v6.0; previously entitled “In Hospital Fall with Hip Fracture Rate” prior to v2023; includes component-specific indicators beginning in v2023. For more details about the expanded PSI 08 specifications, rationale, and testing in v2023, see the [PSI 08 Expansion Announcement](#).
^c Previously entitled “Perioperative Hemorrhage or Hematoma Rate” prior to v2021
^d Previously entitled “Postoperative Physiologic and Metabolic Derangement” prior to v5.0
^e Previously entitled “Accidental Puncture or Laceration Rate” prior to v6.0.
^f Previously entitled “Unrecognized Abdominopelvic Accidental Puncture or Laceration Rate”
^g Calculated in the PDI software module
^h Previously entitled “Patient Safety of Selected Indicators” prior to v6.0

A.5 Pediatric Quality Indicators (PDIs)

The PDIs are a set of measures that can be used with hospital inpatient discharge data to provide a perspective on the quality of pediatric healthcare and the health of the pediatric population. There are two types of PDIs. The seven area-level PDIs (four primary indicators and three composites) use hospital administrative data to identify rates of hospitalization for “ambulatory care sensitive conditions” within a given region. They are designed to capture a population’s overall wellness (community health) and access to quality health care. The seven hospital-level PDIs screen for problems that occur while a patient is hospitalized, and that patients experience as a result of exposure to the healthcare system. These events may be preventable by changes in the system or hospital.

The PDIs are expressly for children under the age of 18. These indicators take into account four factors—differential epidemiology of child healthcare relative to adult healthcare, dependency, demographics, and development—that relate to all aspects of children’s healthcare. Neonatal Quality Indicator (NQI) 03 is a PDI calculated for neonates.

Table 7 (and Appendix Tables B.1 and B.2) list all of the PDIs and indicate whether they are measured at the area or the hospital level. The PDI module contains a total of 14 indicators-11 primary indicators and 3 composite indicators. Of the primary indicators, seven are hospital-level indicators and four are area-level indicators of quality of pediatric care. The three composite indicators are area-level indicators.
Table 7. List of AHRQ Pediatric Quality Indicators (PDIs)

<table>
<thead>
<tr>
<th>Abbrev</th>
<th>Indicator Name (v2023)</th>
<th>Area or Hospital Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>NQI 03</td>
<td>Neonatal Blood Stream Infection Rate</td>
<td>Hospital</td>
</tr>
<tr>
<td>PDI 01</td>
<td>Accidental Puncture or Laceration Rate</td>
<td>Hospital</td>
</tr>
<tr>
<td>PDI 05</td>
<td>Iatrogenic Pneumothorax Rate</td>
<td>Hospital</td>
</tr>
<tr>
<td>PDI 08</td>
<td>Postoperative Hemorrhage or Hematoma Rate</td>
<td>Hospital</td>
</tr>
<tr>
<td>PDI 09</td>
<td>Postoperative Respiratory Failure Rate</td>
<td>Hospital</td>
</tr>
<tr>
<td>PDI 10</td>
<td>Postoperative Sepsis Rate</td>
<td>Hospital</td>
</tr>
<tr>
<td>PDI 12</td>
<td>Central Venous Catheter-Related Blood Stream Infection Rate</td>
<td>Hospital</td>
</tr>
<tr>
<td>PDI 14</td>
<td>Asthma Admission Rate</td>
<td>Area</td>
</tr>
<tr>
<td>PDI 15</td>
<td>Diabetes Short-Term Complications Admission Rate</td>
<td>Area</td>
</tr>
<tr>
<td>PDI 16</td>
<td>Gastroenteritis Admission Rate</td>
<td>Area</td>
</tr>
<tr>
<td>PDI 18</td>
<td>Urinary Tract Infection Admission Rate</td>
<td>Area</td>
</tr>
<tr>
<td>PDI 90</td>
<td>Pediatric Quality Overall Composite</td>
<td>Area</td>
</tr>
<tr>
<td>PDI 91</td>
<td>Pediatric Quality Acute Composite</td>
<td>Area</td>
</tr>
<tr>
<td>PDI 92</td>
<td>Pediatric Quality Chronic Composite</td>
<td>Area</td>
</tr>
</tbody>
</table>

B. Specifications

Technical specifications for each of the indicators are posted on the AHRQ QI website (https://qualityindicators.ahrq.gov). The specifications provide a written description of the measure, numerator, numerator exclusions, denominator, and denominator exclusions. Specifications are based on information found in a typical discharge abstract, billing record or inpatient claim, including age, sex, ICD-10-CM/PCS diagnosis and procedure codes, the Medicare-Severity-Diagnostic Related Group (MS-DRG) and Major Diagnostic Category (MDC) appropriate for the date of discharge, day of procedures, length of stay, source of admission / point of origin, type of admission, and discharge disposition.

Given that not all data claims include MS-DRGs and MDCs, users must derive these from information on the billing record (see section D.4 for more details). Expected values generally align with the Uniform Bill (UB-04) classification scheme. In addition to the written description of the measure, the technical specification documents provide the specific ICD-10-CM/PCS for each clinical construct. The specifications are operationalized in two different software platforms. Both software platforms and associated documentation are freely available on the AHRQ QI website:

- SAS: https://qualityindicators.ahrq.gov/Software/SAS.aspx
- WinQI: https://qualityindicators.ahrq.gov/Software/WinQI.aspx
C. Data

The AHRQ QIs are specified for use with hospital discharge abstracts, billing records or claims data (administrative data consistent with the UB–04 format). The AHRQ QIs are intended to be calculated on an entire patient population (e.g., all discharges from a hospital in a given time period).³

User data must contain information about basic patient demographics (e.g., age, sex), ICD-10-CM/PCS coded clinical diagnoses and procedures, and information about the hospital stay (e.g., length of stay, type of admission, where the stay originated, discharge disposition, discharge quarter). See the Software Instructions Guide for a detailed list of each of the data elements, including the name, a complete description, format, and values, used in the AHRQ QI specifications.

D. Patient Population

D.1 Identification of Adult and Pediatric Discharges

Discharge records in the dataset are analyzed as either adult or pediatric on the basis of age and MDC (Table 8. Analysis Data Inclusion Rule). Discharges in MDC 14 (Pregnancy, Childbirth & the Puerperium) are analyzed as adult regardless of age. Despite pediatric age exclusions built into PSI and IQI indicators, some observations with ages greater than 17 have MDC 15 (Newborns & Other Neonates with Conditions Originating in Perinatal Period). Because these observations could be newborn patients, starting with v2021, the software excludes observations with MDC = 15 from adult IQI and PSI modules. Note that starting with v2023, MDC 14 and MDC 15 are identified in the software via individual code lists (MDC14PRINDX and MDC15PRINDX).

Table 8. Analysis Data Inclusion Rule

<table>
<thead>
<tr>
<th>Analysis Data</th>
<th>Inclusion Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult</td>
<td>(AGE≥18 years or MDC=14) and MDC ≠ 15</td>
</tr>
<tr>
<td>Pediatric</td>
<td>AGE<18 years and MDC≠14</td>
</tr>
</tbody>
</table>

With a few exceptions, discharges for adults are used to calculate PQIs, IQIs, and PSIs. Discharges for children and adolescents are used to calculate PDIs, and discharges for neonates are used to calculate Neonatal Blood Stream Infection Rate (NQI 03) and Birth Trauma Rate – Injury to Neonate (PSI 17). PQEs include visits of both adult and pediatric populations.

Table 9 shows a summary of the indicators by age group. See Appendix B for a detailed list of all indicators and the patient population of interest.

³ For v2023, the AHRQ QIs are created using three calendar years of data.
Table 9. Age Groups and Indicators

<table>
<thead>
<tr>
<th>Population</th>
<th>Age / Major Diagnostic Category (MDC)</th>
<th>Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult</td>
<td>18+ Years</td>
<td>PQI 01, PQI 03, PQI 07, PQI 11–12, PQI 14, PQI 16, PQI 90–93, QI 08–09, QI 11–12, QI 15–18, QI 20, QI 31, QI 90–91, PSI 06, PSI 08–15, PSI 90, PQE 01, PQE 05</td>
</tr>
<tr>
<td>18+ Years or Obstetric</td>
<td></td>
<td>QI 21–22, QI 33, PSI 02, PSI 05, PSI 07</td>
</tr>
<tr>
<td>18 to 39 Years</td>
<td></td>
<td>PQI 15, PQE 04</td>
</tr>
<tr>
<td>18 to 64 Years</td>
<td></td>
<td>PQE 03</td>
</tr>
<tr>
<td>18 to 89 Years or Obstetric</td>
<td></td>
<td>PSI 04</td>
</tr>
<tr>
<td>40+ Years</td>
<td></td>
<td>PQI 05, QI 12, QI 30, PQE 02</td>
</tr>
<tr>
<td>65+ Years</td>
<td></td>
<td>QI 19</td>
</tr>
<tr>
<td>Vaginal delivery</td>
<td></td>
<td>PSI 18, PSI 19</td>
</tr>
<tr>
<td>(no age parameters)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pediatric</td>
<td>Neonates / Newborns</td>
<td>PSI 17, NQI 03</td>
</tr>
<tr>
<td>0 to 17 Years</td>
<td></td>
<td>PDI 01, PDI 05, PDI 10, PDI 12</td>
</tr>
<tr>
<td>3 months to 17 Years</td>
<td></td>
<td>PDI 16, PDI 18, PQE 03</td>
</tr>
<tr>
<td>2 to 17 Years</td>
<td></td>
<td>PDI 14</td>
</tr>
<tr>
<td>5 to 17 Years</td>
<td></td>
<td>PQE 01, PQE 04</td>
</tr>
<tr>
<td>6 to 17 Years</td>
<td></td>
<td>PDI 15, PDI 90–92</td>
</tr>
</tbody>
</table>

D.2 Identification of Patient Residing in Area of Interest

A fundamental component of the AHRQ QI area-level indicators (PQIs and some PDIs) is the area of residence of the patient, usually specified by the Federal Information Processing Standards (FIPS) county and state codes (but that could also be determined by ZIP Codes). The area of patient residence determines the catchment area of the numerator (the number of all indicator-specific hospital stays defined by that area) and the denominator (the corresponding U.S. Census population estimate for the
area). Patients who do not reside in the area of interest are not included in the calculation of that area’s rates.

D.3 Identification of Present on Admission (POA)

A fundamental component of the AHRQ IQI, PSI, and PDI specifications v5.0 and beyond is whether a patient has a clinical condition or complication which is present upon their admission to the hospital. The presence of a clinical condition or complication is used to determine if a discharge should be included as a numerator event or to ensure the accurate identification of comorbidities. If POA information is not available, all clinical conditions on a discharge record, except the principal diagnosis, are considered to have occurred in the hospital, and not present at the time of admission to the hospital.

POA was added to the UB-04 effective October 1, 2007, and hospitals incurred a payment penalty for not including POA on Centers for Medicare and Medicaid Services (CMS) Medicare FFS records beginning October 1, 2008. Each diagnosis on a discharge record must indicate whether the condition was “present at the time the order for inpatient admission occurs” according to the ICD-10-CM/PCS Coding Guidelines. Additional information about the coding guidelines for POA can be found at:

Table 10 lists the possible values of the POA data elements (Y, N, U, W, 1, or missing) along with whether the AHRQ QIs treat the clinical condition or complication as present at the time of admission. The principal diagnosis is always assumed to be POA by definition, regardless of the coding of the POA data element in the principal field. Secondary diagnosis codes first are checked to see whether the diagnosis is exempt from reporting POA. If the secondary diagnosis is exempt, it is considered POA. If the secondary diagnosis is not exempt, then it considered POA if the POA data element is coded with a Y or W. Secondary diagnosis codes are considered not POA if the POA data element is coded with an N, a U, a blank, or a 1.

10 Data before January 1, 2011 do not include POA indicator information, and contain an ‘X’ in this field, indicating that POA indicator information is not available.
Table 10. Values for the Present-on-Admission Data Element

<table>
<thead>
<tr>
<th>ICD-10-CM/PCS Guidelines</th>
<th>Description</th>
<th>Present at Time of Admission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y – Yes</td>
<td>Diagnosis is present at the time of inpatient admission</td>
<td>Yes</td>
</tr>
<tr>
<td>N – No</td>
<td>Diagnosis is not present at the time of inpatient admission</td>
<td>No</td>
</tr>
<tr>
<td>U – Unknown</td>
<td>Documentation is insufficient to determine whether condition is present on admission</td>
<td>No</td>
</tr>
<tr>
<td>W – Clinically undetermined</td>
<td>Hospital is unable to clinically determine whether condition is present on admission</td>
<td>Yes</td>
</tr>
<tr>
<td>1 – Unreported/not used; also includes UB-04 values previously coded as 1</td>
<td>Reported as exempt from reporting on a nonexempt diagnosis</td>
<td>No</td>
</tr>
</tbody>
</table>

D.4 Identification of Major Diagnostic Category (MDC)

Another fundamental component of the AHRQ QI specifications is the MS-DRG and MDC to which a discharge is assigned.

MS-DRGs and MDC are derived from the CMS MS-DRG grouper algorithm, which assigns the MDC based on the principal diagnosis.\(^{11}\) Other versions of the MS-DRG grouper produce slightly different results with respect to certain high resource intensity MS-DRGs. Specifically, MS-DRGs 001-019 and 981-989 are classified as “pre-MDC” MS-DRGs, which means that they are associated with such high length of stay and/or cost that they supersede the usual assignment of MS-DRGs within body system or MDC categories. For records assigned to these MS-DRGs, the official CMS MS-DRG grouper software retains the MDC that would be assigned based on the principal diagnosis and procedure codes, whereas other versions of the grouper software overwrite the MDC assignment with a blank, missing, or nonnumeric value such as “PRE.” Pre-MDC assignments together with “invalid” or “ungroupable” MS-DRGs, MS_DRGs 998 and 999 are not considered in the AHRQ QI specifications.

E. Area-Level Quality Indicators

E.1 Overview of Area-Level Indicators

Area-level indicators capture cases of potentially preventable hospital stays or complications that occur in the population in a given geographic area. The AHRQ QI software and reference population calculate the PQIs, PQEs and area-level PDIs for areas. Area-level rates are constructed using denominators that capture the size of the area’s population using census (or user supplied) data.\(^{12}\)

\(^{12}\) Previous versions of area-level indicators included two types of condition-specific denominators. First, some indicators allowed the denominator to be specified with the diabetic population only and calculated with the SAS QI
Area-level indicators contained in the PQI module identify hospital admissions that evidence suggests might have been avoided through access to high-quality community care and resources. Indicators contained in the PQE module identify emergency department visits that might have been avoided. The area-level indicators contained in the PDI module are adapted from indicators from the other modules.\(^\text{13}\)

Area-level indicators have numerators, denominators and observed rates. In addition, some area-level indicators have expected rates, risk-adjusted rates and smoothed rates.

E.2. Numerator, Denominator, and Observed Rates for Area-Level Indicators

E.2.1 Numerator and Numerator Exclusions

Numerators are based on the condition or procedure of interest. The specifications often stipulate that cases should be excluded from the numerator for one of the following reasons:

1. The outcome of interest is very difficult to prevent or has an unclear conceptual relationship to access to quality care or community resources.
2. The patient was transferred from another health care facility (to avoid double counting a single encounter).
3. Encounters are missing data elements that are required for indicator construction.
4. Obstetric cases are excluded from some measures by default because discharges with a principal diagnosis relevant to those measures exclude obstetric discharges.

PQE cases are excluded if the patient is treated at an emergency department in a state that differs from the patient’s state of residence. In addition, cases are excluded from the reference population numerator of area-level indicators if the patient resides in a state that did not contribute to the HCUP State Inpatient Databases (SID). Cases are excluded from the PQE reference population if the patient resides in a state did not contribute to the State Emergency Department Databases (SEDD). PQE 05, Visits for Back Pain also requires linkage between visits and cases are excluded for states that do not permit linkage.

E.2.2 Denominator

The denominator is based on the census population estimate for the patient’s geographic area of residence. Note that the age- and sex-specific population denominator estimates correspond to the age and sex criteria of the numerator (e.g., adult population for adult indicators, adult female population for female-specific indicators, pediatric population for pediatric indicators). Geographic area is defined at the county level, specifically the FIPS county codes.

For information about how the denominators are calculated from census data, see Chapter III.C and the QI Population Documentation File at:

(but not in the WinQI) software through the condition-specific denominator at the state-level feature. However, the disease-specific denominator file has been temporarily removed from the software beginning with v2021 for further review and refinement. Second, three area-level indicators (Perforated Appendix Admission Rate [PQI 02 and PDI 17] and Low Birth Weight [PQI 09]) had discharge-based condition-specific denominators, meaning that the denominator was the count of discharges for a specific condition among patients residing in an area. These three measures were retired in v2019 specifications and software.

\(^{13}\) Area-level IQIs and PSIs were retired in v7.0 ICD-10-CM/PCS specifications and software. As of v7.0 ICD-10-CM/PCS, none of the IQIs or PSIs reflect quality of care across geographic areas.
E.2.3 Observed Rate

The observed rate of an area-level indicator is the number of persons with the condition or procedure of interest divided by the number of persons in the geographic area of interest. Note that the age and sex-specific population denominator estimates correspond to the age and sex criteria of the numerator. As noted above, the denominator is a population estimate from a U.S. Census Bureau dataset.

Older versions of the AHRQ QI software allowed users to calculate quarterly observed rates. However, quarterly rates needed to be interpreted with caution, given seasonal variation for many conditions and the potential decrease in reliability associated with reduced numerator counts. Since v2019, the AHRQ QI software does not include quarterly calculations.

E.3. Comparing Indicators Across Geographic Areas

E.3.1 Overview of Expected, Risk-Adjusted, and Smoothed Rates for Area-Level Indicators

In order to make meaningful comparisons of the area-level rate for one area with a national average area, it is helpful to account statistically for population characteristics such as age, sex, poverty level in that area. For most QIs, risk-adjusted rates calculated by indirect standardization are used. In statistical language, the risk adjustment control for demographic differences via regression analyses (area-level indicators use logistic regression). This chapter discusses the risk factors that are used with the area-level indicators. All area-level indicators are risk adjusted for demographics. None of the area-level indicators are risk adjusted for clinical factors.

Three sets of QI rates are calculated for risk-adjusted area-level indicators: expected or predicted rates, risk-adjusted rates, and smoothed rates.

Expected and risk-adjusted rates both acknowledge that geographic areas are unique and differ in two important ways from the representative profile observed in the reference population. First, there is heterogeneity in the care that is available, in the community resources, or in exposures from the environment. Second, most areas differ in the demographic composition of their residents. The expected rate is that which would prevail if heterogeneity from sources other than demographics were removed, but local demographic characteristics were allowed to vary. The risk-adjusted rate then uses the difference between the rate observed in a given area and that expected rate to project the rate that would result in the reference population if local differences other than demographic prevailed.

The expected rate answers the question, “What rate of admissions would we expect to see if this geographic area provided the average access to care observed in the reference population, but provided it to patients with the locally observed distribution of characteristics?” (i.e., average performance from the reference population of the universe of patients applied to locally observed mix of residents). When the observed rate is smaller than the expected rate (or the observed / expected ratio is < 1), then there is reason to think that the geographic area is performing better than average on this indicator.

The risk-adjusted rate is the product of the ratio of the observed and expected rate and the reference population rate. Risk adjustment permits the rate for a given geographic area to be compared with the rate for the reference population. The risk-adjusted rate answers the question, “What rate of admissions is expected if the standard of care applied to local residents were applied to the reference population?” (i.e., locally observed performance on a representative mix of patients from the reference population). If the risk-adjusted rate is higher than the reference rate (or if observed rates are higher than expected rates), it
means that the admission rate for a given geographical area is worse than expected based on the experience of patients in the reference population with a similar distribution of characteristics.

The smoothed rate is a weighted average of the reference population rate and the locally observed geographic area rate. If the data from the individual geographic area include many observations and provide a numerically stable estimate of the rate, then the smoothed rate will be very close to the risk-adjusted rate, and it will not be heavily influenced by the reference population rate. Conversely, the smoothed rate will be closer to the reference population rate if the geographic area rate is based on a small number of observations and may not be numerically stable, especially from year to year.

E.3.2 Risk Factors for Risk Adjustment for Area-Level Indicators (v2023)

For area rates, the risk adjustment models adjust for age-group proportions by sex. The models include age groups (in 5-year increments) for each sex. The PQI module contains an option to incorporate a poverty variable, defined as the percent of the population under the federal poverty line for each area. County-level poverty data are obtained from the U.S. Census Small Area Income and Poverty Estimates. In v2023, both coefficients based on 2019 and 2020 poverty data are included. For v2023 only, users select whether risk adjustment for a pandemic or non-pandemic context is preferred, and the corresponding coefficients are applied (2020 for pandemic context and 2019 for non-pandemic context). All U.S. counties are assigned to a poverty decile (POVCAT) based on the year selected. The poverty deciles then are used as risk factors in the risk adjustment model. For v2023, PQE coefficients are estimated using 2019 HCUP SID and SEDD. Indicators can be adjusted for age and sex, or for age, sex and poverty decile. For all area-level indicators, the risk factors used in risk adjustment are age, sex, and poverty deciles. See Appendix C for a list of risk factors by module.

E.3.3 Expected or Predicted Rate for Area-Level Indicators

The expected or predicted rate for an area-level QI is the rate that would be observed if the amount and quality of outpatient and preventive care available across the general population were available to individuals living in specific geographic areas. Expected rates are predicted for each area using risk adjustment model coefficients that summarize the age and sex distribution of the area’s population and optionally, the poverty decile within which the area’s poverty rate falls.

An expected (or predicted) rate for each QI is derived for each area of interest in the dataset. The risk adjustment for an area’s expected rate is calculated using parameter estimates that were previously estimated using the entire reference (general) population for each QI (see Appendix A for addition QI-related documentation, including parameter estimates tables). Because each area in the user’s sample has a distinct sex and age distribution, the expected rates at the area level may vary from the reference (general or standard) population’s expected rate for each QI. We define the observed (O_m) and expected rates (E_m) of area m by, respectively,

$$O_m = \frac{1}{n_m} \sum_{i \in A_m} Y_i$$

\[E_m = \frac{1}{n_m} \sum_{i \in A_m} \hat{Y}_i \]

Here, \(A_m \) is the collection of persons in the population at risk; \(n_m \) is the population size; \(Y_i \) is the outcome for person \(i \); and \(\hat{Y}_i \) is the person-level expected or predicted probability for person \(i \).

E.3.4 Risk-Adjusted Rate for Area-Level Indicators

A risk-adjusted rate is derived for each QI for each area of interest. The risk adjustment for each area is calculated using the embedded reference (general or standard) population risk-adjusted rate and the area-specific observed rate and expected rate for each QI. The risk-adjusted rate, using an indirect standardization approach, equals the reference (general or standard) population rate (\(\alpha \)) multiplied by the ratio of observed rate in the user’s sample to expected rate in the user’s sample:

\[RAR_m = \alpha \cdot \frac{O_m}{E_m} \]

Because each area in the user’s sample has a distinct observed rate and a distinct expected rate for each QI, each area will have a distinct risk-adjusted rate that may vary from the reference (general or standard) population rate for each QI.

We used logistic regression models to build risk adjustment models for QIs that need risk adjustment. For complicated risk adjustment models, the national HCUP reference population observed rate may not be exactly the same as the average of predicted event rates. In the modeling process, we assessed model calibration properties, but the O-E ratio (observed rate to expected rate ratio) may not be exactly equal to one. In software development (not part of the publicly released software), we multiplied the predicted rate for each person by this constant (O-E ratio) to make sure the new predicted rates are perfectly calibrated to the observed rates. To be consistent, we included the national O-E ratio that was calculated based on our reference population in the AHRQ software v2023. We also provided users the options of calibrating to the reference population or to users’ populations.

1. Reference population-based O-E ratio is recommended in most situations, and it is also the default choice in the software.
2. Users’ own population-based O-E ratio option is kept in the software for users who want to calibrate the predicted rates to users’ population.

When area rates are compared to reference population rates, differences may be observed for several reasons. Some of the most important reasons may be related to the availability of quality preventive and outpatient care, and other reasons may contribute as well, but after risk adjustment, the differences should not be attributable to differences in the age and sex profiles in the areas.
E.3.5 Risk-Adjusted Rate Variance for Area-Level Indicators

The standard error of the risk-adjusted rate for each area is calculated using a method recommended by Iezzoni15 and described by Hosmer and Lemeshow16 that represents the amount of within-area variance due to sampling (i.e., as the number of patients per area increases, this variance tends to zero).

Using a Taylor expansion or “delta method” for the variance of the ratio of two stochastic variables, we compute the variance of the risk-adjusted rate:

\[
\text{Var}(RAR_m) \equiv \alpha^2 \frac{E(O_m)^2}{E_m^2} \left(\frac{\text{Var}(O_m)}{E(O_m)^2} - 2 \frac{\text{Cov}(O_m, E_m)}{E(O_m) \cdot E_m} + \frac{\text{Var}(E_m)}{E_m^2} \right)
\]

It is common practice in these calculations to neglect the variance of the predictor \(E_m\) and to consider a normal distribution for the risk-adjusted rate (only true in the limit \(n_m \to \infty\)).16 In this case, the above formula simplifies to:

\[
\text{Var}(RAR_m) \equiv \alpha^2 \frac{\text{Var}(O_m)}{E_m^2}
\]

and the 95\% confidence intervals are calculated assuming normality.

E.3.6 Smoothed Rates for Area-Level Indicators

For each area in the dataset, a smoothed rate can be calculated for each QI. The smoothed rate for each area is calculated using the pre-determined signal variance17 estimated from the reference (general) population and the pre-determined area-specific noise variance and risk-adjusted rate.18 Because each area in the user’s sample has a distinct noise variance and a distinct risk-adjusted rate for each QI, each area will have a distinct smoothed rate that may vary from the reference (general) population smoothed rate for each QI.

Specifically, each area’s smoothed rate is a weighted average of the risk-adjusted rate and the reference (general) population rate; the smoothed rate is calculated with an empirical Bayes shrinkage estimator (i.e., shrinkage weight) (1) to result in a rate that will be near that from the input dataset if the area’s rate is estimated in a stable fashion with minimal noise or (2) to result in a rate near that of the reference (general) population if the rate from the area is unstable and based on noisy data. Thus, the smoothed rate for an area with stable estimates will be similar to the area’s risk-adjusted rate, whereas the smoothed rate for an area with unstable estimates will be similar to the reference (general) population rate.

The accent “~” is used to denote the reliability adjustment. The formula for the smoothed rate is as follows:

\[
\overline{RAR}_m = \lambda_m \cdot RAR_m + (1 - \lambda_m) \cdot \alpha
\]

17 The pre-determined values are embedded in the software.

18 The smoothing factors are included in the software for v2023.
where the reliability weight λ_m for area m is a function of the population signal variance τ^2 and area-level noise variance σ_m^2. Specifically, the reliability weight is the ratio of the signal variance (i.e., true variation in area quality reflected by the risk-adjusted rates) to the total variance, which includes sampling error:

$$\lambda_m = \frac{\tau^2}{\tau^2 + \sigma_m^2}$$

The noise variance is an estimate of variability in the QI outcome within the area (county) of interest, and the signal variance is an estimate of variability in the QI outcome across all areas of interest.

Noise Variance $\hat{\sigma}_m^2 = \left(\frac{\alpha}{n_mE_m}\right)^2 \sum_{i \in A_m} \hat{Y}_i (1 - \hat{Y}_i)$

Signal Variance $\hat{\tau}^2 = \frac{\sum_{m=1}^M (\hat{\tau}_m^2 + \sigma_m^2)^2 \left\{ \frac{M}{M - 1} (RAR_m - \bar{RAR})^2 - \hat{\sigma}_m^2 \right\}}{\sum_{m=1}^M (\hat{\tau}_m^2 + \sigma_m^2)^2}$

Here, M is the number of areas with persons at risk for the measure, α is the observed rate for the reference population; \hat{Y}_i is the person-level expected or predicted probability for person i; and for area m, A_m is the collection of persons in the population at risk, n_m is the population size, E_m is the expected rate, RAR_m is the risk-adjusted rate, and \bar{RAR} is the weighted average of hospital risk-adjusted rates. Note that $\hat{\tau}^2$ appears on both sides of the signal variance equation; it is estimated in an iterative fashion.20

E.3.7 Smoothed Rate Variance for Area-Level Indicators

The smoothed rate is an empirical Bayes posterior estimate of the hospital’s risk-adjusted rate—that is, it is calculated from the reliability-weighted combination of the risk-adjusted rate and reference population rate. The variance of the smoothed rate is given by:

$$\text{Var}(\bar{RAR}_m) = \tau^2 (1 - \lambda_m)$$

E.4 Composite Rates for Area-Level Indicators

The area-level composite QIs are unweighted combinations of conceptually related component QIs. The area-level QI composites are created by grouping records together using a logical “OR” operation to assign them to a composite numerator when they appear in any of the relevant component numerators. For example, the numerator for PQI 93 includes all records that qualify for any diabetes-related PQI (PQI 01, PQI 03, PQI 14, or PQI 16). Observed, risk-adjusted, and smoothed rates and their variances for the area-level composites are then computed using the same methods described for the individual component area-level QI.

E.5 Interpretation of Rates for Area-Level Indicators

The area-level QIs reflect the healthcare system, not hospital care, and may be used as “screening tools” to identify problems with ambulatory care access or quality of care provided across the system or community health. These QIs serve as a trigger for more in-depth investigation in order to explain

19 The weights are $\frac{1}{(\hat{\tau}_m^2 + \sigma_m^2)^2}$.

disparities in avoidable hospitalization rates for ambulatory care sensitive conditions, patient safety events or procedure utilization. Such information can help public health agencies, State data organizations, health care systems, and others interested in improving health in their communities to target populations for interventions, form policy or evaluate impact of interventions and policy. Although many factors can influence area-level QI rates, the indicators provide a good starting point for assessing access to quality health services or health promoting resources in the community and the health of individuals residing in the community.

The observed, risk-adjusted and smoothed rates for area-level indicators are scaled to the rate per 100,000 population. AHRQ assesses reliability of the area-level QI rates among areas. Rates for areas with very small populations are often less reliable; smoothed rates will account for the low reliability. AHRQ recommends using smoothed rates for all comparisons.

Overall, the signal-to-noise estimates based on a national, all-payer population for the PQI measures are 0.74 to 0.98. For this population, most indicators are stable for all but the smallest areas (under 2,000-3,000 adults). However, reliability estimates are not only a function of size but also depend on other factors, such as the risk-adjusted rates, noise variance, and prior distribution assumptions. As such, AHRQ does not calculate a "minimum population size" for the area level measures.

F. Hospital-Level Quality Indicators

F.1 Overview of Hospital-Level Indicators

The AHRQ hospital-level indicators include hospital mortality indicators, utilization indicators, and adverse-event indicators. These hospital-level indicators are part of the IQI, PSI, and PDI modules.

- **Hospital-level indicators** address questions such as: Did the patient have an inpatient procedure for which there are questions of overuse, underuse, or misuse? Did the patient experience an adverse quality-related event while in the care of a specific healthcare provider?

- **In-hospital mortality indicators** are for medical conditions and surgical procedures that have been shown to have mortality rates that vary substantially across institutions and for which evidence suggests that high mortality may be associated with deficiencies in the quality of care.

- **Utilization indicators** track procedures in which there are questions of overuse, underuse, or misuse. The usage of the procedures being examined varies significantly across hospitals and areas, and high or low rates by themselves do not represent poor quality of care; rather, the information is intended to inform consumers about local practice patterns.

- **Adverse-event indicators** are for medical conditions and procedures that have been shown to have complication/adverse event rates that vary substantially across institutions and for which evidence suggests that high rates may be associated with deficiencies in the quality of care. Adverse-event indicators usually include only those cases in which a secondary diagnosis code flags a potentially preventable complication. A few indicators are based on procedure codes that imply a potential preventable adverse event.

All hospital-level indicators have numerators, denominators, and observed rates. In addition, most hospital-level indicators are measured as rates—the number of hospitalizations with the outcome (mortality, adverse event) of interest divided by the hospitalizations at risk for the outcome (or procedure). Hospital-level indicators are more complicated than area-level indicators because they have *indicator-specific denominators* to identify only the hospitalizations that were at risk for the outcome of
interest and use a customized list of regression covariates that are selected when the QI software is updated annually using methods described in Chapter III.

F.2 Special Cases: Operationalizing Hospital-Level Numerators and Denominators
Some of the complexity of the hospital-level indicators is evident in the operationalization of the numerator and denominator specifications, including present-on-admission status, distinction between comorbidities and complications, and indicator-specific comorbid risk factors embedded in the numerator and denominator definitions.

F.2.1 Importance of Present on Admission (POA): Complications vs Comorbidities
As noted in Chapter II.D.3, POA is an important element in the AHRQ QI specifications. POA indicates whether a diagnosis is present at the time of admission (comorbidity) or arose during a hospitalization (complication).

For the hospital-level AHRQ QIs, an indicator-specific complication is counted in the numerator, while the indicator-specific comorbid condition is excluded from the calculation of the hospital-level AHRQ QI. Some of the indicators identify adverse conditions that develop as medical complications during the hospitalization of interest. Evidence suggests that high rates may be associated with lower quality of care. For example, PSI 03 measures the rate of pressure ulcers. However, some of these complications may have been POA, which would not be related to the quality of inpatient care.

The hospital-level PSIs and the hospital-level PDIs use POA to define the numerator event (implemented as denominator exclusion) and identify comorbidities for risk adjustment. POA is also incorporated into the AHRQ Clinical Classifications System Refined (CCSR) for Diagnoses used to risk adjust the hospital-level IQI and PDI rates. The COVID-19 risk factor also used POA starting with v2023. See Appendix B for the complete list of POA dependent indicators.

F.2.2 Importance of Major Diagnostic Category (MDC)

The hospital-level AHRQ QI specifications rely heavily on MDC. MDCs are used in two ways: (1) to capture or exclude obstetric cases in the denominator, and (2) to exclude broad categories of clinical conditions which may raise the likelihood that a numerator event is not preventable. The MDC is also used in risk models to adjust for broad categories of clinical conditions in addition to the more focused Modified MS-DRG (MDRG) covariates.

F.3 Numerators, Denominators and Observed Rates for Hospital-Level Indicators
F.3.1 Numerator
Numerators are based on the outcome of interest (mortality or adverse event).

F.3.2 Denominator and Denominator Exclusions
The denominator is defined to include patients at risk for the numerator event. Patients may be excluded from the denominator based on being at very low risk of having numerator event (e.g., normal newborns).

21 ICD-10-CM/PCS MS-DRG v40.1, list of MS-DRGs, available at: https://www.cms.gov/files/zip/icd-10-ms-drugs-v401-effective-april-1-2023.zip. The modified DRG (MDRG) pools individual CMS-DRGs and MS-DRGs into a larger category. See the parameters estimates documentation for details on the MS-DRG to MDRG crosswalk.
being at high risk for a non-preventable event or having an event or underlying clinical precedents present on admission.

Three primary strategies are used to account for variations in case mix between hospitals. More than one approach may be employed for a single indicator. The strategies include:

1. Inclusion and exclusion criteria that limit the denominator to clinically homogeneous populations.
2. Stratification of observed and risk-adjusted rates by important clinical risk factors or procedure types (IQI 09, IQI 11, IQI 17, PSI 04, PSI 14).
3. Risk adjustment of rates to account for case mix. Note that for stratified measures, risk-adjusted rates are available for each stratum and for the overall rate. More detail on risk adjustment can be found later in this chapter in Section F.4.

General Description

The denominator of the hospital-level indicators is typically defined as a medical and/or surgical discharge, or by a specific surgical procedure. Medical and surgical discharge types are defined by lists that group MS-DRGs into medical and surgical groups and generally correspond with the CMS designation as a surgical/medical MS-DRG. A list of operating room (OR) procedures is used to define denominator inclusion and exclusion criteria for some measures where the intended denominator includes only major OR procedures that are not performed as a result of the complication of interest.

Denominator Exclusions

Generally, discharges may be excluded from the denominator for one (or more) reasons:

1. The outcome of interest has been coded as POA.
2. The outcome of interest is very difficult to prevent and therefore not an indication of substandard care.
3. The discharge is at very low risk for the adverse event and is therefore excluded to keep from diluting the QI denominator.
4. The exclusion enhances face validity with clinicians (e.g., exclude patients from being at risk of a pressure ulcer [PSI 03] if they have not been hospitalized for at least three days).
5. The patient was transferred to another health care facility (to avoid either double counting a single encounter or incomplete capture of the event).
6. Encounters missing data elements that are required for indicator construction (e.g., missing principal diagnosis code, disposition of patient or the source of admission).

\[\text{ICD-10-CM/PCS MS-DRG v401, list of MS-DRGs, available at: https://www.cms.gov/files/zip/icd-10-ms-drgs-v401-effective-april-1-2023.zip}\]

\[\text{Numerator exclusions are based on similar reasons listed here for PSI 05, an indicator of volume/counts.}\]

\[\text{For most hospital-level indicators, transfers to another facility are excluded and transfers from other facilities are accounted for during risk adjustment.}\]
F.3.3 Observed Rate

Observed rates for hospital-level indicators are calculated by dividing the number of discharges with the outcome of interest (mortality, adverse event) by the number of discharges for patients at risk of the outcome (denominator).

F.4 Comparing Indicators across Hospitals, Units, or Time

F.4.1 Overview of Expected, Risk-Adjusted, and Smoothed Rates for Hospital-Level Indicators

In order to make meaningful comparisons of the hospital-level indicators from one hospital to another, one unit or another, and/or from one time period to another, it is helpful to account statistically for differences in demographics and clinical case mix of each of the hospitals, units, or time periods (if there are changes in referral sources).

Expected and risk-adjusted rates both acknowledge that individual hospitals are unique and differ in two important ways from the representative profile observed in the reference population. First, there is heterogeneity in the quality of care that is provided. Some hospitals may provide exemplary care while others provide sub-standard care. This is an important dimension of differences. Second, most individual hospitals serve patients with a distribution of covariates (demographics and comorbidities) that differs from the reference population. Some hospitals serve populations that are at higher risk for adverse events, and some serve populations that are at lower risk. This is a dimension that makes it difficult to make meaningful comparisons of observed rates. The expected and risk-adjusted rates each peg one of these two dimensions (quality of care or patient mix) to that observed in the reference population and then provide information on the second dimension, as observed in the local data.

The expected rate answers the question, “What rate of adverse events would we expect to see if this hospital provided the average level of care observed in the reference population, but provided it to patients with the locally observed distribution of characteristics?” (i.e., average performance from the reference population of the universe of patients applied to locally observed mix of patients with their local risk profiles). When the observed rate is smaller than the expected rate (or the observed / expected ratio is < 1), then there is reason to think that the hospital is performing better than average on this indicator.

The risk-adjusted rate is calculated by multiplying the ratio of the observed rate and expected rate with the reference population observed rate. The risk-adjusted rate answers the converse question, “What rate of adverse events would we see in this hospital if they provided the locally observed quality of care to patients whose distribution of characteristics matched those in the reference population?” (i.e., locally observed performance on a representative mix of patients from the reference population). If the risk-adjusted rate is higher than the reference rate (or if observed rates are higher than expected rates), it means the performance of the hospital is worse than what would be expected based on the experience of patients in the reference population with a similar distribution of characteristics.

The smoothed rate is a weighted average of the reference population rate and the local risk-adjusted hospital rate. If the data from the individual hospital include many observations and provide a numerically stable estimate of the rate, then the smoothed rate will be very close to the risk-adjusted rate, and it will not be heavily influenced by the reference population rate. Conversely, the smoothed rate will be closer to the reference population rate if the hospital rate is based on a small number of observations and may not be numerically stable, especially from year to year.
F.4.2 Risk Factors for Hospital-Level Indicators

For accountability measures, the goal of risk adjustment in comparative outcome measures is to account for differences in patients across measured entities (e.g., hospitals) that affect outcome rates and that are unrelated to the quality of care. When such differences are not addressed, differences in the measure score will reflect both case mix and quality, and will be biased against hospitals who have patients at higher risk for the measured adverse outcome.

All hospital-level indicators are risk adjusted with the exception of the volume/count indicators.

Identifying clinical condition categories is challenging for all age groups and outcomes. The IQI module uses AHRQ’s Clinical Classifications Software Refined (CCSR) for ICD-10-CM Diagnoses and CCSR for ICD-10-PCS Procedures to collapse individual diagnosis and procedure codes into a smaller number of meaningful categories. AHRQ’s CCSR categories for diagnoses and procedures are used to capture risk factors that relate to comorbidities, procedure subtype, and procedure complexity. The IQI software creates the procedure based CCSR categories only for procedures that occur on or prior to the day of the IQI denominator procedure. This accounts for procedure subtype and complexity or concurrent procedures but will not adjust for procedures resulting from post-operative complications. Starting in v2021, the AHRQ CCSR for ICD-10-CM Diagnoses replaced the APR-DRGs, based on Refined-DRGs and All-Payer DRGs systems, in the condition-based IQIs. Starting in v2022, the CCSR for ICD-10-PCS Procedures replaced the APR-DRGs for procedure-based IQIs.

For PSIs, AHRQ Elixhauser Comorbidity codes and comorbidity count categories are used in the software to cover comorbidity conditions that can be either present on admission or after admission. For PDIs, AHRQ CCSR software is used because it covers pediatric conditions, whereas the MS-DRGs do not. Comorbidity count categories of AHRQ Comorbidity codes are also included for non-neonatal indicators for PDIs.

Four classes of risk factors are considered for the AHRQ QI hospital-level indicators, including demographics, severity of illness, clinical/comorbidities, and discharge-specific information. Table 11 provides an overview of the four classes of risk factors.

Table 11. AHRQ QI Risk Adjustment Covariates for Hospital-Level Indicators

<table>
<thead>
<tr>
<th>Category</th>
<th>DI</th>
<th>PSI</th>
<th>PD</th>
<th>NQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td>Sex<sup>a</sup></td>
<td>Sex<sup>a</sup></td>
<td>Sex<sup>a</sup></td>
<td>Sex<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>Age<sup>a</sup></td>
<td>Age<sup>a</sup></td>
<td>Age in days (90 days–1 year)<sup>a</sup></td>
<td>Age in days (0 or 1 day)<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Age in years (1 year<sup>a</sup>)</td>
<td></td>
</tr>
<tr>
<td>Severity of Illness</td>
<td>Modified MS-DRG<sup>b</sup></td>
<td>Modified MS-DRG<sup>b</sup></td>
<td>Modified MS-DRG<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MDCs<sup>b</sup></td>
<td>MDCs<sup>b</sup></td>
<td>MDCs<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Clinical / Comorbidities</td>
<td>AHRQ CCSR for ICD-10-CM Diagnoses<sup>c</sup></td>
<td>AHRQ CCSR for ICD-10-CM Diagnoses<sup>c</sup></td>
<td>AHRQ CCSR for ICD-10-CM Diagnoses<sup>c</sup></td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>IQI</td>
<td>PSI</td>
<td>PDI</td>
<td>NQI</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>AHRQ CCSR for ICD-10-PCS Procedures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AHRQ Comorbidities (using latest guidance on POA requirements)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Count categories of AHRQ Comorbidities (using latest guidance on POA</td>
<td>Count categories of AHRQ Comorbidities (using latest guidance on POA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>requirements)</td>
<td>requirements)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do Not Resuscitate (POA)</td>
<td>Do Not Resuscitate (POA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indicator-specific risk factors</td>
<td>Indicator-specific risk factors</td>
<td>Indicator-specific risk factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discharge-specific information</td>
<td>Transfer-in status</td>
<td>Transfer-in status</td>
<td>Transfer-in status</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surgical/Medical discharge (MS-DRG)</td>
<td>Surgical/Medical discharge (MS-DRG)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stratified risk groups</td>
<td>Indicator-specific risk stratifiers</td>
<td>Indicator-specific risk stratifiers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: AHRQ, Agency for Healthcare Research and Quality; CCSR, Clinical Classification Software Refined; IQI, Inpatient Quality Indicator; MDC, Major Diagnostic Category; MS-DRG, Medicare Severity-Diagnostic Related Group; NQI, Neonatal Quality Indicator; PDI, Pediatric Quality Indicator; PSI, Patient Safety Indicator; QI, Quality Indicator.

a Categories are mutually exclusive.
b Variable or variable categories are selected into model for some indicators.
c AHRQ CCSR for ICD-10-CM Diagnoses are modified and additional comorbidity groups are also included.
d AHRQ CCSR for ICD-10-PCS Procedures are modified to only include procedures occurring on or before the day of the denominator procedure.

F.4.3 Expected Rate for Hospital-Level Indicators

Expected rates are predicted for each hospital using risk adjustment model coefficients that summarize the demographic and clinical case mix of the hospital. An expected (or predicted) rate for each QI is derived for each hospital. Using reference population risk adjustment parameters and indirect standardization, each eligible discharge (i.e., one that is included in the denominator of the indicator) is scored for its expected (or predicted) probability for the outcome of interest using PROC SCORE. PROC SCORE produces new predictions from a model. For the QI module implementation, this SAS procedure takes a new set of discharges (i.e., from the user’s dataset) and calculates probabilities from the risk adjustment model; these probabilities are the discharge-level expected outcomes, which are then aggregated by hospital to yield the hospital-level expected rate. This output score is simply the sum across all binary covariates in the risk adjustment model of the scalar multiplication of the presence or absence of a covariate (1 or 0) times the value of the coefficient from the risk adjustment model for that covariate.

Denoted by:

- Y_i, the observed (0, 1) outcome for discharge i
- \hat{Y}_i, the expected (predicted) rate for discharge i
- A_h, the set of discharges in hospital h
- n_h, the number of discharges at hospital h
- α, the reference population rate (average outcome in the entire sample)

We define the observed and expected rates of hospital h by, respectively,

$$O_h = \frac{1}{n_h} \sum_{i \in A_h} Y_i$$

$$E_h = \frac{1}{n_h} \sum_{i \in A_h} \hat{Y}_i$$

F.4.4 Risk-Adjusted Rate for Hospital-Level Indicators

The AHRQ QIs use indirect standardization to calculate the risk-adjusted rate. The risk-adjusted rate is given by the indirectly standardized ratio multiplied by the reference population rate:

$$RAR_h = \alpha \cdot \frac{O_h}{E_h}$$

We used logistic regression models to build risk adjustment models for QIs that need risk adjustment. For complicated risk adjustment models, the national HCUP reference population observed rate may not be exactly same as the average of predicted event rates. In the modeling process, we assessed model calibration properties, but the O-E ratio (observed rate to expected rate ratio) may not be exactly equal to one. In software development (not part of the publicly released software), we multiplied the predicted rate

for each discharge by this constant (O-E ratio) to make sure the new predicted rates are perfectly calibrated to the observed rates. To be consistent, we included the national O-E ratio that was calculated based on our reference population in the AHRQ software v2023. We also provided users the options of calibrating to the reference population or to users’ populations.

1. Reference population-based O-E ratio is recommended in most situations and it is also the default choice in the software.
2. Users’ own population-based O-E ratio option is kept in the software for users who want to calibrate the predicted rates to users’ population.

F.4.5 Risk-Adjusted Rate Variance for Hospital-Level Indicators

The standard error of the risk-adjusted rate for each hospital is calculated using a method recommended by Iezzoni27 and described by Hosmer and Lemeshow28 that represents the amount of within-hospital or area variance due to sampling (i.e., as the number of patients per hospital or individuals per area increases, this variance tends to zero). This standard error is used to calculate lower and upper bound 95% confidence intervals around the risk-adjusted rate as risk-adjusted rate +/- 1.96 * risk-adjusted rate standard error.

Using a Taylor expansion or “delta method” for the formula for the variance of the ratio of two stochastic variables, we compute the variance on the risk-adjusted rate:

\[
\text{Var}(RAR_h) = \alpha^2 \frac{E(O_h)^2}{E_h^2} \left(\frac{\text{Var}(O_h)}{E(O_h)^2} - 2 \frac{\text{Cov}(O_h, E_h)}{E(O_h) \cdot E_h} + \frac{\text{Var}(E_h)}{E_h^2} \right)
\]

It is common practice in these calculations to neglect the variance of the predicted values \(\hat{Y}_i \) and to consider a normal distribution for the risk-adjusted rate (as \(n_h \rightarrow \infty \)).29 In this case, the above formula simplifies to:

\[
\text{Var}(RAR_h) = \alpha^2 \frac{\text{Var}(O_h)}{E_h^2}
\]

and the 95% confidence intervals are calculated assuming normality. However, arguments to support using nonapproximate equations29 for the RAR confidence intervals (in particular, when \(n_h \) is small) may be considered in future releases of the AHRQ QI software.

F.4.6 Smoothed Rate for Hospital-Level Indicators

Each hospital’s smoothed rate is a weighted average of the risk-adjusted rate and the reference population rate calculated from discharges in the reference population; the smoothed rate is calculated with an empirical Bayes shrinkage estimator (1) to result in a rate that will be near that calculated from the input dataset if the hospital’s rate is estimated in a stable fashion with minimal noise, or (2) to result in a rate near that of the reference population if the rate from the hospital is unstable and based on noisy data.

Thus, the smoothed rate for a hospital with stable estimates will be similar to the hospital’s risk-adjusted rate, whereas the smoothed rate for a hospital with unstable estimates will be more similar to the rate calculated in the discharges of the reference population.

The accent “~” is used to denote the reliability adjustment. The formula for the smoothed rate is as follows:

$$
\overline{RAR}_h = \lambda_h \cdot RAR_h + (1 - \lambda_h) \cdot \alpha
$$

where the reliability weight λ_h for hospital h is a function of the reference population signal variance τ^2 and hospital’s noise variance σ_h^2. Specifically, the reliability weight is the ratio of the signal variance (i.e., true variation in hospital quality reflected by the risk-adjusted rates) to the total variance, which includes sampling error:

$$
\lambda_h = \frac{\tau^2}{\tau^2 + \sigma_h^2}
$$

The noise variance is calculated for each hospital based on the user’s data. The signal variance is a parameter calculated from the reference population. The two variances are estimated as follows:

$$
\text{Noise Variance} \quad \sigma_h^2 = \left(\frac{\alpha}{n_h E_h} \right)^2 \sum_{i \in A_h} \hat{Y}_i (1 - \hat{Y}_i)
$$

$$
\text{Signal Variance} \quad \hat{\tau}^2 = \frac{\sum_{h=1}^{H} \frac{1}{(\hat{\tau}^2 + \sigma_h^2)} \left(\frac{H}{H - 1} (\overline{RAR}_h - \overline{RAR})^2 - \sigma_h^2 \right)}{\sum_{h=1}^{H} \frac{1}{(\hat{\tau}^2 + \sigma_h^2)^2}}
$$

where \overline{RAR} is the weighted average of hospital risk-adjusted rates; H is the number of hospitals with patients at risk for the QI, α is the reference population rate; \hat{Y}_i is the patient-level predicted probability; and for hospital h, A_h is the set of patients, n_h is the number of patients, E_h is the expected rate, and RAR_h is the risk-adjusted rate. Note that $\hat{\tau}^2$ appears on both sides of the signal variance equation; it is estimated in an iterative fashion.

For small hospitals, the reliability weight λ_h is usually small since the noise variances are usually larger than large hospitals.

F.4.7 Smoothed Rate Variance for Hospital-Level Indicators

The smoothed rate is an empirical Bayes posterior estimate of the hospital’s risk-adjusted rate—that is, it is calculated from the reliability-weighted combination of the risk-adjusted rate and reference population mean. The variance of the smoothed rate is given by:

$$
\text{Var} \left(\overline{RAR}_h \right) = \tau^2 (1 - \lambda_h)
$$

30 The weights are $\frac{1}{(\hat{\tau}^2 + \sigma_h^2)}$.

F.5 Weighted Composite Scores for Hospital-Level Indicators

F.5.1 Overview of Composite Methodology

The general method for computing a hospital-level composite measure is to calculate a weighted average of a set of risk and reliability-adjusted (e.g., smoothed) component quality indicators. The individual smoothed quality indicators are referred to as “component” indicators, and the weighted average of the components is the “composite.” The composite weights are selected based on the intended interpretation of the composite QI and are determined empirically.

F.5.2 Composite Value

The basic steps for computing the composite are as follows:

Step 1. Compute the risk-adjusted rate and confidence interval.

The AHRQ QI risk-adjusted rate and confidence interval are computed as described above.

Step 2. Scale indicators compute the Observed-to-Expected (O/E) ratio by scaling the risk-adjusted rate using the reference population.

To combine the component indicators across a common scale, each indicator’s risk-adjusted rate is divided by the reference population rate to yield the observed to expected ratio (O/E ratio) ratio. The O/E ratio for hospital \(h \) is 1.0 if the observed QI rate is equal to the expected QI rate determined from the risk adjustment parameters applied to the data. For component indicator \(c \) of hospital \(h \), the O/E ratio is given by:

\[
OE_{hc} = \frac{O_{hc}}{E_{hc}} = \frac{RAR_{hc}}{\alpha_c}
\]

where subscript \(c \) indexes the component indicator. For example, \(\alpha_c \) is the reference population rate for component indicator \(c \), and \(RAR_{hc} \) is the analogous risk-adjusted rate for hospital \(h \).

Step 3. Compute the reliability-adjusted ratio.

The reliability-adjusted O/E ratio is computed as the weighted average of the risk-adjusted ratio and the reference population ratio, which is defined to be equal to 1, since the observed rate equals the expected rate in the population. The weights are determined by the reliability weight for the hospital (or other unit of analysis). The accent “~” is used to denote the reliability adjustment.

\[
\overline{OE}_{hc} = \lambda_{hc}OE_{hc} + (1 - \lambda_{hc}) = \lambda_{hc}(OE_{hc} - 1) + 1
\]

Note that multiplying the above expression by the reference population rate \(\alpha \), the smoothed rate is recovered.

Step 4. Select the component weights.

The composite measure is the weighted average of the scaled and reliability-adjusted ratios for the component indicators. The default type of weights applied is dependent on the specific composite of interest. Table 12 shows each of the composite indicators and the type of weight (default) used to derive the indicator.
Table 12. AHRQ QI Composite and Weight

<table>
<thead>
<tr>
<th>Abbrev</th>
<th>Indicator Name</th>
<th>Weight (by default)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Numerator</td>
<td>Denominator</td>
</tr>
<tr>
<td>IQI 90</td>
<td>Mortality for Selected Inpatient Procedures</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>IQI 91</td>
<td>Mortality for Selected Inpatient Conditions</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PSI 90</td>
<td>Patient Safety and Adverse Events Composite (beginning in v6.0)</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Alternative options for weights include the following:

- **Numerator weight.** A numerator weight is based on the relative frequency of the numerator for each component indicator in the reference population. In general, a numerator weight reflects the amount of harm in the outcome of interest, in this case, a potentially preventable adverse event. One also might use weights that reflect the amount of excess mortality or complications associated with the adverse event or the amount of confidence that one has in identifying events (i.e., the positive predictive value).

- **Denominator weight.** A denominator weight is based on the relative frequency of the denominator for each component indicator in the reference population. In general, a denominator weight reflects the degree of risk of experiencing the outcome of interest in a given population. For example, the denominator weight might be based on the demographic composition of a health plan, the employees of a purchaser, a State, an individual hospital, or a single patient.

- **Harm weight.** Harm weighting is based on an analysis that assigns each component indicator a weight that reflects the contribution of that indicator to excess harmful outcomes that occur in the population that experience the component events. Component indicators that both are common and lead to significant excess mortality and morbidity will have the highest weights, whereas those that are less common or have lower mortality and morbidity associated with them will have lower weights. For additional information, see the “Quality Indicator User Guide: Patient Safety Indicators (PSI) Composite Measures, August 2023” at:

Step 5. Construct the composite measure.

The composite measure is the weighted average of the component indicators using the selected weights and the scaled reliability-adjusted indicators. For hospital h, the composite value is calculated by:

$$COMPOSITE_h = \sum_c w_c \bar{O}E_{hc}$$

where w_c denotes the weight applied to component indicator c.
When a hospital's component indicator fails the minimum denominator criterion (i.e., it has fewer than three denominator cases), PSI 90 sets the O/E ratio = 1 for that component indicator. If a hospital fails the denominator criteria for all component indicators, the hospital's PSI 90 value then equals one. Hospitals that are missing many of the component indicators will have less informative PSI 90 scores (not distinguishable from average performance).

F.5.1 Composite Variance

The probability interval of the composite measure is based on its standard error, which is the square root of the variance. The variance is computed based on the signal variance-covariance matrix and the reliability weights.

Let \mathbf{M} be a $1 \times K$ vector of observed quality measures (for a given hospital, suppress hospital subscript for convenience), noisy measures of the true underlying $1 \times K$ quality vector $\mathbf{\mu}$, such that:

$$
\mathbf{M} = \mathbf{\mu} + \mathbf{\epsilon}
$$

where $\mathbf{\epsilon}$ is a $1 \times K$ noise vector with zero mean and $K \times K$ variance-covariance matrix $\text{Var}(\mathbf{\epsilon}) = \Omega_\epsilon$. Let the $K \times K$ signal variance-covariance be $\text{Var}(\mathbf{\mu}) = \Omega_\mu$.

Let $\mathbf{\hat{\mu}}$ be a $1 \times K$ vector indicating the posterior (filtered) estimate of $\mathbf{\mu}$, such that:

$$
\mathbf{\hat{\mu}} = \mathbf{\mu} + \mathbf{v}
$$

where \mathbf{v} is a $1 \times K$ vector with zero mean and $K \times K$ variance-covariance matrix $\text{Var}(\mathbf{v})$ representing the prediction error of the posterior estimates.

The goal is to estimate the variance for any weighted average of the posterior estimates. For a given $1 \times K$ weighting vector \mathbf{w}, this is given by:

$$
\text{Var}(\mathbf{vw}) = \mathbf{w}' \text{Var}(\mathbf{v}) \mathbf{w}
$$

where \mathbf{w}' indicates the transpose of \mathbf{w}.

Thus, we need an estimate of $\text{Var}(\mathbf{v})$. We simplify the calculation by assuming that the filtered estimates are formed in isolation for each measure (univariate) and that the estimation error is assumed not correlated across measures (e.g., each measure is based on a different sample of patients or independent patient outcomes).

Forming each measure in isolation, using superscripts $k = 1, ..., K$ to indicate the measure, we have:
\[\hat{\mu}^k = M^k \hat{\beta}^k = M^k (\Omega_{\mu}^{kk} + \Omega_{\epsilon}^{kk})^{-1} \Omega_{\mu}^{kk} \]

\[\text{Var}(\psi^k) = \Omega_{\mu}^{kk}(1 - \beta^k) = \Omega_{\mu}^{kk} - \Omega_{\mu}^{kk}(\Omega_{\mu}^{kk} + \Omega_{\epsilon}^{kk})^{-1} \Omega_{\mu}^{kk}, \]

where:

\[\hat{\beta}^k = (\Omega_{\mu}^{kk} + \Omega_{\epsilon}^{kk})^{-1} \Omega_{\mu}^{kk} \]

is the signal ratio of measure \(k \), the reliability of the measure, and is the \(r \)-squared that measures how much of the variation in the true measure can be explained with the filtered measure. Note that in this simplified case, the filtered estimate is a univariate shrinkage estimator. For the non-diagonal elements of the covariance matrix (for \(j \neq k \)),

\[\text{Cov}(\psi^j, \psi^k) = E[(\mu^j - \hat{\mu}^j)(\mu^k - \hat{\mu}^k)] \quad (2.1) \]

assuming independent estimation error in the two measures, one gets the following simplified expression (see supplemental notes below for the derivation):

\[\text{Cov}(\psi^j, \psi^k) = \Omega_{\mu}^{jk}[(1 - \beta^j)(1 - \beta^k)] \quad (2.2) \]

Note that this is just the signal covariance times one minus the signal ratio for each of the measures. Thus, if the signal ratio is zero for each measure, the covariance in the estimates is simply the signal covariance. As either measure gets a stronger signal ratio (becomes more precise), the covariance in the estimates shrinks to zero.

Also note that if one measure is missing, then the signal ratio is simply set to zero. The filtered estimate is shrunk all the way back to the (conditional) mean, and the variance and covariance are as defined above.

The standard error on the composite is the square root of the variance, which is then used to compute the 95% probability interval.

Supplemental Notes:

To derive formula (2.2), we substitute

\[\hat{\mu} = M\hat{\beta} = (\mu + \epsilon)\hat{\beta} \]

into (2.1) and obtain (for \(j \neq k \))

\[\text{Cov}(\psi^j, \psi^k) = E[(\mu^j - (\mu^j + \epsilon^j)\hat{\beta}^j)(\mu^k - (\mu^k + \epsilon^k)\hat{\beta}^k)] \]

\[= E[(\mu^j(1 - \beta^j) - \epsilon^j\beta^j)(\mu^k(1 - \beta^k) - \epsilon^k\beta^k)] \]

\[= E[\mu^j\mu^k(1 - \beta^j)(1 - \beta^k) + \mu^j\epsilon^j(1 - \beta^k)\beta^j + \mu^k\epsilon^j(1 - \beta^j)\beta^k + \epsilon^j\epsilon^k\beta^j\beta^k] \]

\[= E[\mu^j\mu^k](1 - \beta^j)(1 - \beta^k) + E[\mu^j\epsilon^j](1 - \beta^k)\beta^j + E[\mu^k\epsilon^j](1 - \beta^j)\beta^k + E[\epsilon^j\epsilon^k]\beta^j\beta^k. \]

Assuming and \(E[\mu] = 0 \), we have

\[E[\mu^j\mu^k] = E[\epsilon^j\mu^k] = E[\epsilon^j\epsilon^k] = 0 \]

\[\text{Cov}(\psi^j, \psi^k) = E[\mu^j\mu^k](1 - \beta^j)(1 - \beta^k) \]
\[
= \text{Cov} (\mu^j, \mu^k) (1 - \hat{\beta}^j)(1 - \hat{\beta}^k) - E[\mu^j]E[\mu^k] (1 - \hat{\beta}^j)(1 - \hat{\beta}^k)
\]

F.6 Interpretation of Counts, Rates, and Scores

Counts are reported for adverse events or indicators where risk adjustment is challenging. As such, risk adjustment is not used for counts. For adverse events, the ideal benchmark is zero. For other counts, national-level benchmarks are provided in the QI benchmark data tables (see Chapter III.B for links to the benchmark data tables).

- Rates are reported for non-composite measures. Observed rates are used for non-comparative purposes while risk-adjusted rates and smoothed rates are better used when comparing hospitals or areas to a national average hospitals or area. For all QIs, a rate below reference rate indicates better quality than expected for that hospital’s case mix. When comparing hospitals to a benchmark, using smoothed rates is desirable given that they adjust for small sample sizes. Although it is possible to compare risk-adjusted rates to a benchmark, it is advised to incorporate confidence intervals/uncertainty estimates and use the appropriate statistical interpretation of results. National benchmarks are available in the QI benchmark data tables (see Chapter III.B for links to the benchmark data tables).

- Scores are reported for hospital-level composite measures (observed to expected ratio). Scores incorporate both risk adjustment and smoothing (i.e., reliability adjustment). A composite below one indicates better quality than expected for that hospital’s case mix; however, the composite is an estimate, and any comparisons should account for uncertainty.

The reliability of the hospital-level indicators varies by indicator. Often less common events have lower reliability, but reliability is also impacted by the distribution of events in the reference population which is influenced by the characteristics of the total population. Reliability is calculated for each hospital. To account for potential issues with reliability, smoothed rates are recommended for most hospital-level measures. Differences between hospitals in both observed and risk-adjusted rates are often more stable using two or more years of data.

G. Recommendations on How to Report Trends

For any comparative analysis (e.g., using pre and post periods), it is important to note the reference population over which the QI models were estimated. For risk and reliability adjustment, the expected QI rate is calibrated to the reference population specific to that QI version.

Calculating and reporting trends in QI rates over time depends on the research question. For example, are the trends meant to illustrate how hospital quality has changed over time against a contemporaneous benchmark? In this example, the analyst could apply the recent version of the QI software to both “pre” and “post” data; in particular, the pre-period QI rate would reflect current hospital quality against the quality that would have been expected had they treated the same type of patients in the post period.

On the other hand, a cross-sectional analysis might apply the QI versions that are concurrent with the observation period of the pre- and post-period discharge populations. In this way, the trends would illustrate how underlying hospital quality changes over time, also taking into account how the reference population had changed over time.
A comparative analysis can also be designed by geographic area or between hospital types. Similarly, the analyst would need to consider whether the underlying risk and reliability adjustment of the QI module is appropriate for measuring hospital quality. The QI module is calibrated to a specific reference population on which hospital and area comparisons are made using the risk- and reliability-adjusted QI rates.
Chapter III. Empirical Development of the AHRQ QIs

In this chapter, we describe the underlying methods used to develop the QI software. Specifically, we describe the reference population data, the calculations performed to update the reference population, possible risk factors used in the risk models derived during QI development, development of risk (and harm) models that provide the parameter estimate used in the software, and a summary of the testing and evaluation that is performed on each indicator.

A. Overview of the Development Process

One of the hallmarks of the AHRQ QI programs is the continuous enhancement and annual refinement of all indicators based on user feedback, review of clinical practice changes, validation studies, empirical testing for validity and reliability, and input from expert panels such as the National Quality Forum (NQF) Patient Safety Committee and experts from the AHRQ QI Workgroups. Additional detail on the AHRQ QI measure development, implementation, maintenance, and retirement process is posted on the AHRQ QI website at: https://qualityindicators.ahrq.gov/measures/qi_resources.

In order for the QIs to remain scientifically acceptable and useful, they must be maintained and potentially enhanced on a regular cycle. QIs need to be updated based on such factors as: recent evidence published in the literature (particularly as publications are made available using the specific QI) and from user feedback, technical specification updates including annual (and sometimes quarterly) coding updates (e.g., ICD-10-CM/PCS, MS-DRGs, MDCs, POA coding guidelines), reference population changes, census population updates, periodic clinical panel review, the Consensus-Based Entity’s (CBE) endorsement and maintenance process, and newly available data and methodological advances in the industry. Each of the material maintenance steps must be considered within the broader measure life cycle.

Each year, the AHRQ QI project takes into account the aforementioned changes and refines the AHRQ QI technical specifications. Refinements may include but are not necessarily limited to the following: integration of new codes, removal of clinically irrelevant codes, new risk models with updated risk adjustment parameter estimates, updated reference population observed, expected, risk-adjusted, and smoothed rates, updated weights for hospital-level composites based on the frequency of the events, and updated variance estimates based on the most recent reference population information. Annually, the AHRQ QI project releases a list (or log) of changes that have been implemented with each release of the AHRQ QI specifications.

Table 13 provides a list of all versions of the AHRQ QI specifications, the date of release, and the year(s) upon which the specifications for the reference population are built.

Table 13. AHRQ QI Specification Releases

<table>
<thead>
<tr>
<th>AHRQ QI Version</th>
<th>Coding Scheme</th>
<th>Release Date</th>
<th>Modules</th>
<th>Year of Reference Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>2023</td>
<td>ICD-10-CM/PCS</td>
<td>Summer 2023</td>
<td>All</td>
<td>2019,2020,2021*</td>
</tr>
<tr>
<td>2022</td>
<td>ICD-10-CM/PCS</td>
<td>July 2022</td>
<td>All</td>
<td>2019</td>
</tr>
<tr>
<td>2021.0.2</td>
<td>ICD-10-CM/PCS</td>
<td>March 2022</td>
<td>IQI</td>
<td>2018</td>
</tr>
<tr>
<td>2021.0.1</td>
<td>ICD-10-CM/PCS</td>
<td>September 2021</td>
<td>PSI, PDI, IQI</td>
<td>2018</td>
</tr>
<tr>
<td>2021</td>
<td>ICD-10-CM/PCS</td>
<td>July 2021</td>
<td>All</td>
<td>2018</td>
</tr>
<tr>
<td>2020</td>
<td>ICD-10-CM/PCS</td>
<td>July 2020</td>
<td>All</td>
<td>2017</td>
</tr>
<tr>
<td>2019</td>
<td>ICD-10-CM/PCS</td>
<td>Summer 2019</td>
<td>All</td>
<td>2016</td>
</tr>
<tr>
<td>2018</td>
<td>ICD-10-CM/PCS</td>
<td>Summer 2018</td>
<td>All</td>
<td>---</td>
</tr>
<tr>
<td>7.0</td>
<td>ICD-10-CM/PCS</td>
<td>Spring 2017</td>
<td>All</td>
<td>---</td>
</tr>
<tr>
<td>6.0</td>
<td>ICD-10-CM/PCS</td>
<td>Summer 2016</td>
<td>All</td>
<td>---</td>
</tr>
<tr>
<td>6.0</td>
<td>ICD-9-CM</td>
<td>Summer 2016 – Spring 2017</td>
<td>All</td>
<td>2013</td>
</tr>
<tr>
<td>5.0</td>
<td>ICD-10-CM/PCS</td>
<td>October 2015</td>
<td>All</td>
<td>---</td>
</tr>
<tr>
<td>5.0</td>
<td>ICD-9-CM</td>
<td>March 2015</td>
<td>All</td>
<td>2012</td>
</tr>
<tr>
<td>4.5a</td>
<td>ICD-9-CM</td>
<td>July 2014</td>
<td>PSI only</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>ICD-9-CM</td>
<td>May 2013</td>
<td>All</td>
<td>2010</td>
</tr>
<tr>
<td>4.4</td>
<td>ICD-9-CM</td>
<td>March 2012</td>
<td>All</td>
<td>2009</td>
</tr>
<tr>
<td>4.3a</td>
<td>ICD-9-CM</td>
<td>September 2012</td>
<td>All</td>
<td>2008</td>
</tr>
<tr>
<td>4.3</td>
<td>ICD-9-CM</td>
<td>August 2011</td>
<td>All</td>
<td>2008</td>
</tr>
<tr>
<td>4.2</td>
<td>ICD-9-CM</td>
<td>September 2010</td>
<td>All</td>
<td>2007</td>
</tr>
<tr>
<td>4.1</td>
<td>ICD-9-CM</td>
<td>December 2009</td>
<td>All</td>
<td>2006</td>
</tr>
<tr>
<td>3.2</td>
<td>ICD-9-CM</td>
<td>February – March 2008</td>
<td>All</td>
<td>2005</td>
</tr>
<tr>
<td>3.1</td>
<td>ICD-9-CM</td>
<td>March 2007</td>
<td>PQI, IQI, PSI</td>
<td>2004</td>
</tr>
<tr>
<td>3.0a</td>
<td>ICD-9-CM</td>
<td>May 2006</td>
<td>PSI only</td>
<td>2003</td>
</tr>
<tr>
<td>3.0</td>
<td>ICD-9-CM</td>
<td>February 2006</td>
<td>PSI only</td>
<td>2003</td>
</tr>
</tbody>
</table>

* The reference population for the hospital quality indicators includes 2019, 2020, and 2021, while the reference population for the area quality indicators includes 2019 and 2020 only for v2023.

Ellipse (--) indicates that no data was available to derive national rates or risk adjustment models.
B. Discharge Reference Population

The AHRQ QIs are developed using hospital discharge abstracts and billing data from HCUP. HCUP is a family of health care databases and related software tools and products developed through a Federal-State-industry partnership.35 HCUP includes the largest collection of longitudinal hospital care data in the United States, with all-payer, encounter-level information beginning in 1988. The HCUP SID36 contains all-payer, encounter-level information on inpatient discharges from the universe of community hospitals in participating states. The SID includes clinical and resource information typically found on a billing record (Uniform Bill – 04, UB-04), such as patient demographics, up to 127 ICD-10-CM/PCS diagnoses and procedures (up to 35 diagnosis and 30 procedure codes are retained in the reference population), length of stay, expected payer, admission and discharge dates, and discharge disposition.

The reference population file is limited to community hospitals and beginning with 2012 data also excludes rehabilitation and long-term acute care (LTAC) hospitals. Information on the type of hospital was obtained by the American Hospital Association (AHA) Annual Survey of Hospitals. AHA defines community hospitals as “all non-Federal, short-term, general, and other specialty hospitals, excluding hospital units of institutions.” Included among community hospitals are specialty hospitals such as obstetrics-gynecology, ear-nose-throat, orthopedic, and pediatric institutions. Also included are public hospitals and academic medical centers.

The HCUP databases represent more than 97 percent of all annual community hospital discharges in the United States. Some states include discharges from specialty facilities, such as acute psychiatric hospitals. The HCUP SID data serve as the reference (or general) population for the AHRQ QIs, upon which national benchmarks for numerators, denominators, observed rates, risk models, expected rates and risk-adjusted rates, and smoothed rates are derived. Specifically, the reference population plays two important roles:

1. The reference population rate for each QI is calculated and serves as a comparative standard. One can analyze data to determine which entities have rates that are higher or lower than those of the overall reference population. The reference population rates are published on the AHRQ QI website in module-specific documents named Benchmark Tables (formerly known as Comparative Data Tables):

35 For a complete list of HCUP Partner organizations that participated in the HCUP SID, please see the Acknowledgements section of this document.

2. The risk adjustment models are re-estimated annually using the most recent reference population dataset. This process is described in Chapter III.F of this document. The models are included in the QI software to allow calculation of risk-adjusted rates. The risk adjustment model covariates and regression coefficients are published on the AHRQ website in module-specific documents named Parameter Estimates Tables:

- PQI Parameter Estimates:
- PQE Parameter Estimates:
- IQI Parameter Estimates:
- PSI Parameter Estimates:
- PDI Parameter Estimates:

Table 14 provides details on HCUP SID data availability, including the year-specific number of states, number of hospitals and total discharges that potentially could be included in the AHRQ QI reference population universe. However, variations from these estimates exist, as not all data is available at the time needed and states may vary in the availability of data elements (e.g., present on admission information or the number of days between admission and procedure).

Table 14. AHRQ QI Reference Population

<table>
<thead>
<tr>
<th>Data Year</th>
<th>Number of States¹</th>
<th>Number of Hospitals²</th>
<th>Total Discharges included in SID</th>
<th>Percentage of discharges³</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>28</td>
<td>2,574</td>
<td>20,088,722</td>
<td>96</td>
</tr>
</tbody>
</table>
Data Year

<table>
<thead>
<tr>
<th>Data Year</th>
<th>Number of States<sup>a</sup></th>
<th>Number of Hospitals<sup>b</sup></th>
<th>Total Discharges included in SID</th>
<th>Percentage of discharges<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>49</td>
<td>4,262</td>
<td>32,681,925</td>
<td>96</td>
</tr>
<tr>
<td>2019</td>
<td>49</td>
<td>4,252</td>
<td>35,612,594</td>
<td>96</td>
</tr>
<tr>
<td>2018</td>
<td>48</td>
<td>4,290</td>
<td>35,549,549</td>
<td>97</td>
</tr>
<tr>
<td>2017</td>
<td>48</td>
<td>4,326</td>
<td>35,747,363</td>
<td>98</td>
</tr>
<tr>
<td>2016</td>
<td>48</td>
<td>4,039</td>
<td>35,612,904</td>
<td>98</td>
</tr>
<tr>
<td>2014</td>
<td>45</td>
<td>4,430</td>
<td>33,645,600</td>
<td>94</td>
</tr>
<tr>
<td>2013</td>
<td>44</td>
<td>4,398</td>
<td>33,670,781</td>
<td>94</td>
</tr>
<tr>
<td>2012</td>
<td>44</td>
<td>4,440</td>
<td>34,440,381</td>
<td>94</td>
</tr>
<tr>
<td>2011</td>
<td>46</td>
<td>4,575</td>
<td>35,504,333</td>
<td>90</td>
</tr>
<tr>
<td>2010</td>
<td>45</td>
<td>4,550</td>
<td>35,722,417</td>
<td>89</td>
</tr>
</tbody>
</table>

Abbreviations: SID, State Inpatient Database

^a Potentially includes 48 states plus the District of Columbia. The number of states included in the reference population may be smaller due to POA and date limitations. The number of states with data from 2021 used for software v2023 is limited due to data availability at the time of software development.

^b Number of hospitals include community, non-rehabilitation, non-long-term acute care hospitals.

^c Represents the percent of SID discharges included in the reference population. Hospital-level QIs that rely on POA indicator information may have fewer discharges in the reference population.

^d Number of states available in December 2022 at the time of reference population development.

B.1 Reference Population for Area-Level Indicators

Beginning with v5.0 (2015), all area-level indicators are developed using a reference population limited to community hospitals and excluding rehabilitation and long-term acute care (LTAC) hospitals.

AHRQ QI Software v2023 used the 2019 HCUP SID, and 2020 HCUP SID as reference population for risk-adjustment models for area measures. In 2019, 49 states, including DC, were available for area-level indicator development. States in the reference population for 2019 represent approximately 97 percent of the United States population, and include: AK, AR, AZ, CA, CO, CT, DC, DE, FL, GA, HI, IA, IL, IN, KS, KY, LA, MA, MD, ME, MI, MN, MO, MS MT, NC, ND, NE, NH, NJ, NM, NV, NY, OH, OK, OR, PA, RI, SC, SD, TN, TX, UT, VA, VT, WA, WI, WV, and WY. 2020 HCUP SID include the same set of states and are used as the benchmark in the Benchmark Data Tables (see Appendix A).

Residents of counties in states not contributing to HCUP are excluded from rate calculations. They are excluded because care received in those states, which is most of the care received by their residents, is missing from the reference population. Residents from some of the excluded counties travel to participating states to receive care, but their admissions are excluded from the numerator. Similarly, admissions for some residents of counties that are included are missing because these residents travel to nonparticipating states. National rates are slightly underestimated because admissions for participating states’ residents traveling to nonparticipating states are not found in the numerator but the residents are included in the denominator. The information needed to adjust calculations for the undercount is lacking currently, so this method produces the most accurate possible rates.
This methodology can be seen in Table 15 below. The reference population includes patients residing in HCUP states and admitted to hospitals in HCUP states.

Table 15. Treatment of State Border Crossing Discharges in the Reference Population

<table>
<thead>
<tr>
<th>Patient county in HCUP State</th>
<th>Admission in HCUP State</th>
<th>Admission in Non-HCUP State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed in SID and included reference population</td>
<td>Not observed in SID</td>
<td></td>
</tr>
<tr>
<td>Patient county in non-HCUP State</td>
<td>Observed in SID, not included reference population</td>
<td>Not observed in SID</td>
</tr>
</tbody>
</table>

Abbreviations: HCUP, Healthcare Cost and Utilization Project; SID, State Inpatient Database

The PQEs are subject to related restrictions. The following states contributed to both the 2019 SEDD and SID: AK, AR, AZ, CA, CO, CT, DC, FL, GA, HI, IA, IL, IN, KS, KY, MA, MD, ME, MI, MN, MO, MS, MT, NC, ND, NE, NH, NJ, NV, NY, OH, OR, RI, SC, SD, TN, TX, UT, VT, WI, and WY. Their data are included in the reference populations for PQE 01 – PQE 04. A smaller number of states provide the data elements needed to link records to determine when an individual incurred more than one encounter in a year: AK, AR, CA, CO, FL, GA, HI, IA, IN, MA, MD, MO, MS, NE, NV, NY, OR, SC, SD, TN, UT, VT, WI and WY. These states are included in the reference population for PQE 05. An additional requirement for PQEs is that the individual reside in the same state where ED treatment was received. By contrast, PQI records are included if the individual is discharged from a hospital in any state contributing to the SID.

In the software, users can utilize the POPYEAR macro to select the census year used as the denominator for generating observed rates. Additionally, users can utilize the RA_YEAR macro to select the risk adjustment models used as expected rates for risk-adjusted rates and reliability-adjusted rates. The RA_YEAR option is not available in the PQE module. For more details about the rationale for multiple years in the reference population and changes to the software, please refer to the Log of Coding Updates and Revisions and Software Release Notes on the AHRQ QI website (see Appendix A).

B.2 Reference Population for Hospital-Level Indicators

Beginning with v5.0 (2015), all hospital-level indicators are developed on a reference population with complete POA information. The reference population file is limited to community hospitals and also excludes rehabilitation and LTAC hospitals.

The v2023 software uses three years of data (2019-2021) in the reference population for risk-adjustment, signal variance, reference population rates, and composite weights for all hospital-level indicators. Using three years of data allows for the inclusion of quarterly COVID-19 effects in the risk adjustment models and provides more robust estimation for indicators with small observed rates. In 2019, 46 of 49 states in the SID included indicators of the diagnoses being POA; in 2020, 47 of 49 states in the SID (available at

37 Community hospital is based on the AHA definition and refers to “all nonfederal, short-term general and special hospitals whose facilities and services are available to the public”. See https://www.cdc.gov/nchs/hus/sources-definitions/hospital.htm for more information.

38 Refer to the Log of Coding Updates and Revisions listed in Appendix A for the rationale behind using a reference population with multiple years for hospital-level indicators.
the time of software development) included indicators of the diagnoses being POA; and in 2021, 27 of 28 states in the SID included indicators of the diagnoses being POA. States not reporting age in days were not used in the development of PSI 17, and states not reporting dates associated with all surgical procedures were not used to develop PSI 04, PSI 09, PSI 10, PSI 11, PSI 12, PSI 14, and PSI 15 (Table 16). Edit checks on POA were developed during an HCUP evaluation of POA coding in the 2011 SID at hospitals that were required to report POA to CMS. The edits identify general patterns of suspect reporting of POA. The edits do not evaluate whether a valid POA value (e.g., Y or N) is appropriate for the specific diagnosis.

There are three hospital-level edit checks:

1. Indication that a hospital has POA reported as Y on all diagnoses on all discharges
2. Indication that a hospital has POA reported as missing on all non-Medicare discharges
3. Indication that a hospital reported POA as missing on all nonexempt diagnoses for 15 percent or more of discharges. The cut-point of 15 percent was determined by two times the standard deviation plus the mean of the percentage for hospitals that are required to report POA to CMS.

Table 16. AHRQ Hospital-Level Indicator Reference Population

<table>
<thead>
<tr>
<th>Data Year</th>
<th>Number of States in Hospital-Level Indicator Reference Population</th>
<th>States not reporting indicators of the diagnoses being POA</th>
<th>States not reporting procedure day (Excluded from PSI 04, PSI 09, PSI 10, PSI 11, PSI 12, PSI 14, and PSI 15)</th>
<th>States not reporting day in age (Excluded from PSI 17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>46</td>
<td>CT, DE, WY</td>
<td>WI, OK, WV, DE</td>
<td>CO, HI, NY</td>
</tr>
<tr>
<td>2020</td>
<td>47</td>
<td>CT, DE</td>
<td>WI, OK, NH</td>
<td>CO, HI</td>
</tr>
<tr>
<td>2021</td>
<td>27</td>
<td>CT</td>
<td>WI, OK, NH</td>
<td>CO, HI</td>
</tr>
</tbody>
</table>

Abbreviations: POA, present on admission

States in the hospital-level indicator reference population for 2019 and 2020 represent approximately 96 percent of the United States population, and include: AK, AR, AZ, CA, CO, DC, FL, GA, HI, IA, IL, IN, KS, KY, LA, MA, MD, ME, MI, MN, MO, MS, MT, NC, ND, NE, NH, NJ, NM, NV, NY, OH, OK, OR, PA, RI, SC, SD, TN, TX, UT, VA, VT, WA, WI, and WV. The 2020 hospital-level indicator reference population also includes WY. The reference population for 2021 HCUP includes the following states: AZ, CA, CO, DC, GA, HI, IA, IL, IN, KS, KY, MD, MN, MO, MS, MT, ND, NJ, NY, OH, OR, PA, RI, SD, VA WI, and WV.

C. Other Data Used for Area-Level Indicator Development

The v2023 AHRQ QI specifications rely on population estimates derived from other data sources, including the U.S. Census Bureau. Every year, the Census Bureau releases postcensal population estimates\(^40\) (as of July 1 of each year) that are generated with the assistance of the Federal State Cooperative Program for Population Estimates (FSCPE) using residence, total births, total deaths, and net migration. With each new issue of July 1 estimates from the Census Bureau, the Census Bureau makes revisions to all years back to the last decennial census. Each decade, after a decennial census, the Census Bureau produces a set of intercensal estimates that provide annual population estimates that are adjusted to smooth the transition from one decennial census to the next. These estimates are used to derive the denominator for area-level indicators. The v2023 2000-2022 AHRQ QI Population File is available at:

As described in Chapter II.E, the area-level indicators also include an optional poverty variable obtained from Census Bureau Small Area Income and Poverty Estimates (SAIPE). The v2023 AHRQ area-level QIs use SAIPE estimates from 2019 and 2020, are available at:

https://www2.census.gov/programs-surveys/saipe/datasets/2020/2020-state-and-county/est20all.xls

D. Coding Updates

D.1 ICD-10-CM/PCS Coding Updates and Coding Guidelines

On October 1, 2015 (FY 2016), ICD-10-CM/PCS became the CMS standard for administrative data. Beginning in FY 2017 (October 1, 2016), new ICD-10-CM/PCS codes and revisions to existing codes are added annually. The codes are maintained by the ICD-10 Coordination and Maintenance Committee. The v2023 AHRQ QI software updates all measure specifications to reflect coding updates for ICD-10-CM/PCS codes effective as of October 1, 2022.\(^41\)

Information on ICD-10-CM/PCS coding updates is located on the NCHS and CMS websites, respectively:

- http://www.cdc.gov/nchs/icd/icd10cm.htm
- https://www.cms.gov/medicare/icd-10/2022-icd-10-cm

D.2 Fiscal Year Coding Updates to Classification Schemes

CMS updates the MS-DRGs, MDCs, OR procedures, valid principal procedures, and POA exempt codes for ICD-10-CM/PCS on an annual basis. Annual updates to these classification schemes may impact the numerators of all indicators and the denominators of all hospital-level indicators. Annually, these changes are reviewed to determine how the changes impact the QIs and their risk models and whether coding changes should result in changes to the QI specifications. In general, the QI specifications align with

\(^41\) For more information about the ICD-10-CM/PCS codes used in AHRQ QIs, see https://www.qualityindicators.ahrq.gov/News/ICD10_v2018_FAQ.pdf.
CMS definitions of OR procedures42 and POA exempt codes;43 however, the QIs use a modified version of the CMS OR procedure list to better capture procedures occurring in an OR setting.

In addition, organizations external to the AHRQ QI program update algorithms based on the ICD-10-CM/PCS system that are utilized in the risk models for the PSI, PDI and IQI. These include AHRQ Elixhauser Comorbidity Software Refined (PSI and hospital-level PDI risk model),44 AHRQ’s Clinical Classification System Refined for ICD-10-CM Diagnoses (IQI risk model and hospital-level PDI risk model),45 AHRQ’s Clinical Classification System Refined for ICD-10-PCS Procedures (IQI risk model model),46 and AHRQ Procedure Classes (hospital-level PDI risk model).47 Updates to these systems are incorporated in the risk models annually.

D.3 Changes to Data Elements on the Uniform Bill

As noted above, the reference population for the AHRQ QIs is based on administrative data with data elements consistent with the UB-04. At times, the National Uniform Bill Committee (NUBC) updates the Uniform Bill and includes changes to or additions to the data elements available on the UB-04, including but not limited to changes in source of admission and present on admission information.

Guidelines for POA Coding are provided in the ICD-10-CM/PCS Official Guidelines for Coding and updated annually by CMS and NCHS.48 Changes to the POA guidelines impact the PSI and PDI numerators and denominators. These guidelines are reviewed and if necessary, changes are made to QI specifications. In addition, POA coding impacts the reference population for the PSI, PDI, and IQIs. Changes to POA coding guideline have the potential of necessitating a change to the POA hospital- and discharge-level edits for the reference population.

Several other data elements are used in the QI specifications. Point of origin describes the “source of the referral for this admission or visit.” Previously the Uniform Bill used the "Source of Admission" data element, which differed in that it described the venue immediately prior to hospitalization. Source of Admission is no longer used in the UB-04 but some states (notably California) use Source of Admission.

42 ICD-10-CM/PCS MS-DRG v40.1 operating room procedures and procedure codes available at: https://www.cms.gov/files/zip/icd-10-ms-drgrs-v401-effective-april-1-2023.zip

To account for the transition time, the QIs use both source of admission and point of origin-based criteria when feasible. Discharge status is also used in the AHRQ QI specifications. Annual updates to the UB-04 are reviewed and if applicable changes are made to the specifications.

E. Reference Population: Numerators, Denominators, and Observed Rates

E.1 Calculating Numerators, Denominators and Observed Rates

For each QI, numerators, denominators, and observed rates are calculated using hospital discharge data from an aggregation of the HCUP SID State files. The methods used for these calculations are described in Chapter III.E.2 and Chapter III.F.4. These calculations are updated annually.49 National benchmark rates are currently provided by AHRQ.50

E.2 Evaluating the Numerators, Denominators and Observed Rates

Nationwide rates from the reference population for all QIs by module are compared against previous estimates to check for expected (i.e., changes to indicator specifications) and unexpected rate changes.

F. Reference Population: Risk Model Development and Parameter Estimates (v2023)

F.1 Rationale for Risk Adjustment

The AHRQ QIs use empirically derived risk models based on a clinically coherent set of candidate variables.31 The goal of risk adjustment should be distinguished from the goal of a prediction model. A prediction model uses all available information to maximize the prediction of an event. A risk model aims to standardize observed performance as a function of factors independent from quality of care. Risk models may have lower performance than prediction models (e.g., statistics in a logistic regression model). For hospital-level QIs, risk models incorporate only factors that are present on admission and unrelated to quality, such as the clinical characteristics of patients at admission. Including risk adjustment variables that are the potential consequences of care quality, such as complications of care, length of stay, or hospital characteristics, will improve a model’s predictive ability but may adjust away the very quality differences we are trying to illuminate.

The AHRQ QI program carefully assesses the need for each individual risk adjuster. First, candidate variables are independent from quality of care. Second, variables must be observable and valid using administrative data across hospitals. Third, the variables should reflect characteristics or factors that are plausibly clinically related to the outcome. Fourth, the candidate variables must be frequent enough to obtain reasonably precise estimates of risk, but adequately homogenous such that risk is not masked. Fifth, the risk factors should vary systematically by hospital, such that inclusion adds information to the model.

49 These calculations were not updated in years when the reference population was unavailable. See Table 14. AHRQ QI Reference Population for more details.
50 Reference population rates are published on the AHRQ QI website in documents named Benchmark Tables (formerly known as Comparative Data Tables; see Chapter III.B).
51 The AHRQ QI software v6.0 (ICD-9-CM) included risk adjustment, while the v6.0, 7.0, and v2018 (ICD-10-CM/PCS) software did not. This is because the AHRQ QI program requires one full year of data to improve the integrity of the risk models. At the time of their release, the v6.0, 7.0, and v2018 software did not have access to a full year of ICD-10-CM/PCS coded data, and thus did not allow for the calculation of risk-adjusted rates.
With these considerations in mind, the hospital-level QI models were developed to include as large a set of clinically meaningful, reliable, and valid risk factors as were found to influence the outcome. Thus, the model goals are shifted towards including as many covariates as theoretically justified and computationally practical, on an indicator-by-indicator basis.

For area-level QIs, risk adjustment aims to account for differences in demographics that are not mutable. In addition, risk adjustment helps to simplify interpretation by removing aspects that may impact hospital utilization but are of less interest to the user. Because users of the area level measures may have different needs for risk adjustment, observed (non-adjusted), age-sex adjusted and age-sex-poverty adjusted models are available. Area-level risk adjustment is limited by the data that are nationally available at the county level. In general, clinical factors are not available. However, because the QIs measure population health, development of chronic disease or the rapid progression of chronic disease may also reflect poor access to care and community-based resources to promote health.

There is wide agreement on most aspects of risk adjustment. The CBE provides one consensus guideline on the formal criteria for the design of valid risk adjustment of outcome measures. The CBE’s Measure Evaluation Criterion for scientific acceptability of outcome measures\(^2\) states:

For outcome measures and other measures when indicated (e.g., resource use): an evidence-based risk adjustment strategy (e.g., risk models, risk stratification) is specified. The risk model and stratification approach is based on patient factors that influence the measured outcome (but not factors related to disparities in care or the quality of care) and are present at start of care. The models have also demonstrated adequate discrimination and calibration OR rationale/data that supports no risk adjustment/stratification.

F.2. Construction of Candidate Covariates for Risk Adjustment

For all hospital level QIs, risk-adjustment models for v2023 account for COVID-19 and use quarterly COVID-time interaction terms to account for changes in the association between COVID and the indicator outcomes across 2020 and 2021, if applicable. Only COVID-19 that is present on admission is accounted for during risk adjustment.

Age and sex main effects are always included in the final risk model. Age-sex interactions are subject to selection in hospital level QI risk-adjustment models. Age-sex interactions are always included in the area level QI risk-adjustment models.

For the PQIs, PQEs and Area PDIs, potential risk adjustment covariates include sex and age in 5-year groups. Adjustment for poverty category decile, as a measure of social risk (optional), is also considered.

For the IQIs, potential risk adjustment covariates include sex, age, transfer status, Do Not Resuscitate (DNR) status, present on admission, indicator-specific risk factors, MDCs, and CCSR for Diagnoses and Procedures dummy variables.\(^3\)

\(^3\) CCSR for Diagnoses are modified to be based on diagnoses that are POA and CCSR for Procedures are modified to only include procedure flags on or prior to the day of the denominator procedure.
The reference (omitted) category for the age-sex interaction categories for the IQI is “65-69 year-old women.” The oldest and youngest age categories may be insufficiently populated to produce stable results.

Transfer-in from another acute care facility is included in final models for IQIs related to medical diagnoses (as opposed to IQI related to surgical procedures). For other measures, transfer status is eligible for variable selection, except IQI 11 and IQI 17 Subarachnoid hemorrhage and IQI 17 Intracerebral hemorrhage, where the empirical relationship lacks face validity. Do Not Resuscitate (DNR) status present on admission is included in the pool of candidate risk adjustment variables for IQIs related to medical diagnoses. For IQI 12 and IQI 30, an indicator for cardiogenic shock, anoxic brain injury, and cardiac arrest present on admission is included in the pool of candidate risk adjustment variables. For IQI 15, an indicator for ST-elevation myocardial infarction is included in the pool of candidate risk adjustment variables.

The CCSR tool for ICD-10-CM diagnoses was developed as part of HCUP. The CCSR aggregates over 70,000 ICD-10-CM diagnosis codes into a manageable number of clinically meaningful categories. Embedded in the AHRQ QI v2023 software, the CCSR generates categories that are used as covariates for hospital-level IQI and PDI risk adjustment. The CCSR categories take two values in AHRQ QI v2023:

- 0 – The CCSR was not triggered by any ICD-10-CM/PCS diagnosis code POA on the input record.
- 1 – The CCSR was triggered by any ICD-10-CM/PCS diagnosis code POA on the input record.

The following CCSR categories for ICD-10-CM diagnoses in the “Factors influencing health status and contact with health services” category were removed from the IQI and PDI risk adjustment due to the heterogenous diagnoses and/or the Z codes included within these categories: FAC002, FAC003, FAC005, FAC007, FAC008, FAC010, FAC011, FAC012, FAC013, FAC016, FAC017, FAC019, FAC021, FAC024, and FAC025.

The CCSR tool for ICD-10-PCS procedures was also developed as part of HCUP. The CCSR aggregates over 80,000 ICD-10-PCS procedure codes into a manageable number of clinically meaningful procedure categories. Embedded in the AHRQ QI v2023 software, the CCSR generates categories that are used as covariates for hospital-level IQI risk adjustment for the procedure-based IQIs. The CCSR categories take two values in AHRQ QI v2023:

- 0 – The CCSR was not triggered by any ICD-10-PCS procedure code occurring on or before the day of the IQI denominator procedure-day on the input record.
- 1 – The CCSR was triggered by an ICD-10-PCS procedure code occurring on or before the day of the IQI denominator procedure-day on the input record.

The following CCSR categories for ICD-10-PCS procedures were removed from IQI risk adjustment in v2023 based on clinical review because of the high likelihood that these factors were endogenous or represent complications resulting from the IQI denominator procedure: ADM001, ADM002, ADM004, ADM005, ADM006, ADM014, ADM017, ADM018, ADM019, ADM021, CAR024, ENT001, ESA001, ESA002, ESA003, ESA004, ESA005, ESA006, ESA007, ESA008, ESA009, ESA010, EST004, GIS021, GNR005, IMG001, IMG002, IMG003, IMG004, IMG008, IMG009, LYM005, MAM002, MAM005, MAM008, MAM010, MAM011, MAM013, MAM015, OTR001, OTR004, RES001, RES005, RES007, RES008, RES010, RES014, and URN006.
For the PSIs, potential risk adjustment covariates include sex, age, Modified Medicare Severity-Diagnostic Related Groups (MDRGs, in which adjacent MS-DRGs with or without major or any comorbidities or complications are aggregated); Major Diagnostic Categories (MDCs); a list of 38 Elixhauser comorbidity variables;\(^5\) Elixhauser comorbidity count categories; whether the patients was transferred in to the hospital; for PSI 04, variables indicating the severity of the condition; for PSI 03, 06, 07, 08, 15, a variable indicating medical/surgical discharges; for PSI 02 and PSI 04, Do Not Resuscitate (DNR) status present on admission; for PSI 13 and PSI 15, variables indicating procedure type or immune risk categories.

Age-sex categories are always included in the final risk model. Age-sex categories span 5-year intervals. The reference (omitted) category for the age-sex interaction categories for the PSI is “65-69 year-old women.”

Several MDRG variables were excluded from consideration as candidate variables because assignment to these MDRGs could be due to an in-hospital complication requiring a procedure such as ECMO or tracheostomy, or another operating room procedure not related to the principal diagnosis.

For the PDIs, risk adjustment was incorporated starting with v2020. Risk adjustment for the PDIs include age, sex, interaction between age and sex (subject to selection), birth weight, and MDRG and CCSR dummy variables as the covariates. For NQI 03, age in days instead of age, and interaction between sex and age in days are included as covariates. We also constructed procedural and diagnostic risk categories based upon clinical input. We excluded PNL 002 CCSR (Short gestation; low birth weight; and fetal growth retardation) before feature selection since this CCSR overlaps with the denominator inclusion/exclusion criteria. For PDI 01 and PDI 10, we included variables indicating procedure type or immune risk categories. Count categories of Elixhauser Comorbidity codes are also included as risk factors in the PDI risk adjustment models to account for multimorbidity.

Several MDRG variables were excluded from consideration as candidate variables because assignment to these MDRGs could be due to an in-hospital complication requiring a procedure such as ECMO or tracheostomy, or another operating room procedure not related to the principal diagnosis. Similarly, the MDRGs based on MS-DRGs for neonates died or transferred to another acute care facility and ungroupable MS-DRGs were not considered as candidate variables for risk-adjustment. The area-level PDIs do not undergo variable selection, and always include sex interacted with age (in 5-year groups) and poverty category (optional) as covariates in the risk adjustment model.

For all hospital level indicators, starting with v2023, the QI risk adjustment models were developed on discharge data that included COVID-19 diagnoses. As such, the QI software no longer defaults to excluding COVID discharges. Instead, the software defaults to the inclusion of all discharges. To temporarily provide users with flexibility, the QI software retains the options to include discharges with COVID only or non-COVID only, but risk-adjusted rates and composites are not available for these options. Furthermore, the algorithm to define COVID was updated to only consider COVID present-on-admission to remain consistent with the definition and intent of other risk factors considered in QI risk adjustment models.

F.3 Feature Selection

For the area-level indicators, the models use the complete set of covariates for sex, age in 5-year age groups, and an interaction between sex and age. There is also an optional set of covariates for poverty category decile based on the county of patient residence. The poverty category control may be useful as a covariate for applications that wish to isolate factors unrelated to poverty, or to identify areas that have better outcomes than would be expected based on the poverty level of the local population. For other applications, adjusting for poverty could mask important disparities in population health.

For hospital-level indicators, the models use demographic and clinical factors. On the basis of cross tabulations between each covariate and the outcome of interest, there must be at least 30 denominator records for that covariate (e.g., >30 denominator cases for the MDRG) and min-cell size equal to two or larger. The omitted covariate within mutually exclusive categories is the reference group for those categories. Reference categories are usually (1) the most common and/or (2) the least risk, or (3) the median category. The choice of omitted reference category does affect how one might describe the parameter coefficients in words, but it does not affect predicted probabilities or model performance.

Variables for inclusion in the final risk adjustment models are selected by the least absolute shrinkage and selection operator (LASSO) selection method. Due to computation resource limitations, one million discharges are randomly selected if the reference population on which the model is run is larger than one million. The LASSO method is used because the traditional p-value or stepwise based selection methods use sequential fitting, which could lead to biased estimates of R-square, coefficients, and local optimal models. The advantage of using LASSO is that LASSO is a global optimization procedure that finds the global optimal model, satisfying certain restraints on the covariates’ coefficients. We implement LASSO selection using R (glmnet function in glmnet library) due to the following main advantages found in R:

The R program is able to use cross validation to tune the penalty parameter (λ), which makes the prediction-based statistics more accurate and reduces potential overfitting/underfitting of the risk adjustment models.

The R program output has multiple statistics that can be used to tune λ, such as C-statistics, mean squared errors, deviance, etc.

The final multivariable model parameters are published on the AHRQ website (see Chapter III.B).

F.4 Estimate the Models

Area-level indicators use logistic models (PROC LOGISTIC). Hospital-level models are estimated using GEEs (hierarchical modelling) to account for within-hospital correlation. These models are run with PROC GENMOD and use a logit link with an independent correlation matrix within clusters. For certain hospital-level models with very large sample sizes, logistic models may be used in place of GEEs to resolve convergence issues.

55 The min cell size is calculated as the minimum value of the following four frequency numbers for each covariate X and QI Y: number of discharges in (X=0, Y=0), (X=1, Y=1), (X=1, Y=0), and (X=0, Y=1). Where X=1 when the covariate is present on the discharge and 0 otherwise, and Y=1 if the QI numerator is 1 and 0 otherwise.

F.4.1 Model Specification

The final model is determined as follows. First, a maximally inclusive set of candidate variables available from the data are evaluated by the module team with clinical and subject matter expertise. Decisions are made about which variables to include as candidate variables, how to handle age-sex categories, and whether to include any additional administrative variables (e.g., transfer-in status). Variables are excluded based on clinical considerations, known unreliability, potential for reflecting complications versus comorbidities, and face validity. These decisions result in an initial model specification that includes all remaining candidate variables (i.e., a saturated model). From the saturated model, variables are considered for removal by a LASSO selection process. The final subset of variables is included in a logistic regression model estimated by generalized estimating equations, clustered on Hospital ID.

F.4.2 Parsimonious Models

A paper by Osborne et al. about registry-based quality measurement evaluated whether risk adjustment models with fewer variables were as useful for indirect adjustment as models with more variables. The authors’ motivation for this work was to reduce the number of variables needed for risk adjustment because the cost of collecting additional variables for hospitals was high. The goal was, therefore, to reduce the number of variables that hospitals needed to measure without sacrificing too much in the way of accuracy.

The AHRQ QIs do not rely on expensive data collection methods for additional information, thus AHRQ is not motivated by the same concerns as the Osborne et al. paper. It is important to note that although some QI models have more than 100 variables, these are based on just a handful of administrative data elements (age, sex, transfer status, principal and secondary diagnoses) that may be used to create multiple categorical variables. These data elements give rise to hundreds of categories within the MDRG variables, but each record has exactly one MDRG assigned. These additional categories help to more accurately assign patient-level risk based on the principal diagnosis. In other words, the model assigns a specific level of risk to each MDRG, which reflects the clinical context about variation in risk by diagnoses.

Reducing the number of MDRG categories serves only to misclassify records with regard to the principal diagnosis and should only be done when a stable estimate cannot be computed. In fact, the development data set (based on the HCUP reference population) is sufficiently large to enable reliable estimates of specific levels of risk for each MDRG in the risk adjustment model. The current approach may be conservative (tend to select fewer variables) relative to the rich data source available.

F.4.3 Collinearity

Collinearity arises when there is complete, or nearly complete, overlap in the information contained between two variables. Collinearity of covariates is well known to have no impact on predictive ability of a model. However, excessive covariance between predictors can lead to large standard errors and unstable coefficients. The p-value based inclusion criterion for the model selection process tends to omit variables with large standard errors, eliminating that concern. In software development, we calculated the variance inflation factor (VIF) for each covariate and dropped any covariates with a VIF value larger than 1,000. The VIF is a measure of the extent to which variance of the estimated regression coefficient is

58 Berry WD, Feldman S. Multiple Regression in Practice. SAGE; 1985. p. 100.
"inflated" by the existence of correlation among the predictor variables in the model. The LASSO model selection procedure is also able to select variables that are not highly correlated given its heavy penalty on the variable coefficients.

All our models converge after the LASSO model selection procedure. At the same time, it is important to point out that the structure of the QI models inherently limits the possibility of collinearity. Collinearity could occur between, but not within, age-sex categories, transfer status, Elixhauser Comorbidity Software Refined, Clinical Classification Software Refined, and MDRGs. In some instances, collinearity is based on overlap between similar categories in different classification systems.

F.4.4 Over-Parameterization

Over-parameterization is a concern that arises when the number of predictor variables is close to the number of records in the sample. With over-parameterization, the variances can be large and consequently the estimates of the regression coefficients can be unstable. The reference population database consists of many thousands, to millions, of observations, depending on QI in question. None of the models have a number of variables approaching the number of records in the reference population. Moreover, variable selection criteria require that a minimum of 30 records be present for each level of each covariate (e.g., at least 30 records for each MDRG). Variables that are under-populated are not included in models. The size of the dataset being used to make predictions is irrelevant to parameterization. The models could be used to compute a predicted probability for a single record.

F.4.5 Complete or Quasi-Complete Separation

Complete separation arises when a linear combination of predictor variables perfectly classifies (separates) the outcome variable. Quasi-complete separation occurs when the dependent variable separates an independent variable or a combination of several independent variables to a certain degree. The AHRQ QI regression models are monitored for convergence criterion during variable selection and in the final model estimating stage. For variables that are forced into the model (e.g., age-sex categories, where applicable) the solution to separation is to identify the variable(s) causing the separation and collapse the variable with the adjacent category closer to the reference group or drop them.

F.4.6 Risk adjustment model with quarter, year, and COVID effects

For hospital level QIs, the v2023 software incorporates three years of HCUP data (2019-2021) as the reference population for risk-adjustment. By utilizing data from three years, the software can factor in the impact of COVID-19 on a quarterly basis and offer more precise estimates for indicators with lower observed rates. Additionally, beginning with v2023, AHRQ is using the following risk adjustment models to accommodate both the pre-COVID era effect and the COVID time trend effect for risk adjustment.

\[Y \sim \mu + \alpha X + \gamma \ast Year_{2019} + \sum_{i=1}^{7} \eta_i Q_i + \sum_{i=1}^{8} \beta_i (Q_i \ast COVID) \]

Here, \(Y \) represents each QI, \(X \) represents the risk factors after LASSO feature selection or forced-in variables, \(Year_{2019} \) is a binary indicator where \(Year_{2019} = 1 \) for HCUP 2019 data and 0 otherwise, COVID is a binary indicator where COVID = 1 if a discharge has COVID present on admission and 0 otherwise, \(Q_i \) is a binary quarter indicator where \(i = 1, 2, \ldots, 8 \) represents eight quarters from Q1-2020 to Q4-2021. The parameter set \(\{\mu, \alpha, \gamma, \eta_i, \beta_i\} \) is the set of regression coefficients from the logistic regression model. Note that the index of \(Q_i \), quarter main effects, goes up to a maximum of 7 instead of 8 because \(\sum_{i=1}^{8} Q_i = 1 - Year_{2019} \); one category must be omitted. Therefore, we use non-COVID discharges in the last quarter \(Q_8 \), together with other reference levels of the risk factors, as the reference level group (estimated through \(\mu \)). Also, because \(\sum_{i=1}^{8} Q_i \ast COVID = COVID \), we dropped the COVID.
main effect, to facilitate the interpretation of the regression coefficients for the interaction term $Q_i \times COVID$, in which β_i can be interpreted as the effect of COVID (present on admission) on the Y outcome within quarter i.

For area level QIs, the v2023 software incorporates two years of HCUP data (2019-2020) as the reference population for risk-adjustment. With this two-year approach, the risk adjustment model can factor in the year under consideration as well as the interaction between year, age, and gender. In v2023 the following risk adjustment models accommodate adjust for time periods before and after COVID-19 for overall risk adjustment. Prior to running QI software, users will indicate whether the context before COVID-19 or after COVID-19 is more appropriate for user applications, thereby activating parameters for 2019 or 2020.

\[
\begin{align*}
\text{NON - SES Model: } Y &\sim \mu + \alpha X_1 + \gamma Year_{2020} + \eta Year_{2020} * sex + \beta Year_{2020} * age + \gamma \\
&\quad + Year_{2020} * age * sex \\
\text{SES Model: } Y &\sim \mu + \alpha X_2 + \gamma Year_{2020} + \eta Year_{2020} * sex + \beta Year_{2020} * age + \theta Year_{2020} \\
&\quad + POVCAT + \gamma Year_{2020} * age * sex
\end{align*}
\]

Here, Y represents each QI, X_1 represents the risk factors used for area level indicators, such as age, sex, age and sex interaction; X_2 represents X_1 plus poverty categories; and $Year_{2020}$ is the binary indicator, where $Year_{2020} = 1$ for a pandemic period context and 0 otherwise. The parameter set $\{\mu, \alpha, \gamma, \eta, \beta, \theta, \gamma\}$ is the set of regression coefficients from the logistic regression model. If a user selects a non-pandemic period context as being most appropriate for the data they are analyzing, the $Year_{2020}$ is set to zero and only the non-pandemic parameters are activated. If a user selects a pandemic period context as being most appropriate for the data they are analyzing, $Year_{2020}$ is set to one, and adjustments will be made to each of the parameters based on the interaction with the binary indicator $Year_{2020}$. The reference group is the reference levels of the risk factors for a non-pandemic period $Year_{2020} = 0$ (estimated through μ).

F.5 Calculate Rates

F.5.1 General Description

In order to make appropriate comparisons among hospitals with different types of patients, the AHRQ QIs use indirect standardization to calculate risk-adjusted rates. The risk-adjusted rate using an indirect standardization approach equals the reference (general or standard) population observed rate multiplied by the ratio of observed rate in the user’s sample divided by expected rate in the user’s sample:

\[RAR_h = \alpha \cdot \frac{O_h}{E_h} \]

Because models for binary outcome events are used, there can be small differences between the observed rate and the expected and risk-adjusted rates in the reference population. For PROC GENMOD with independent correlation structure and PROC LOGISTIC in SAS, the ratio of the observed rate to the expected rate in the reference population is very close to one if not identical.

After the new risk adjustment models are fitted, expected values (i.e., record-level predicted probabilities) are output so that they can be used to calculate expected rates and risk-adjusted rates. These values can be output directly from the regression procedures, or can be calculated in a subsequent step by applying PROC SCORE and the regression coefficients to the data. Reference population rates and signal variances are calculated.
F.5.2 Special Case: Calculating Rates with Stratified Indicators

For PSIs and IQIs that have clinical strata, the risk-adjusted rate for the overall indicator is calculated as the observed-to-expected ratio multiplied by the reference population rate, where the record-level observed and expected values are summed across categories of risk strata. This approach differs from other AHRQ PSIs and IQIs without strata, in that each discharge-record’s expected value is computed using one of the distinct stratum-specific risk adjustment models that correspond to an assigned stratum. In instances where indicators are stratified, it is recommended that users should not consider a single stratum in isolation but rather all rates across all strata should be considered together.

F.6 Calculate Signal-to-Noise Ratio and Variance Estimates

Reliability is a crucial measure for determining measure quality. Reliability is estimated by the variation of true hospital quality of care, known as the signal variance, and the variation of sampling within each hospital, known as the noise variance (see section E.3.6 for the formula used to calculate reliability of area-level indicators). In general, good reliability means that the sampling errors are very small, the variation of true quality of care across all hospitals is large, and that we can use this measure to distinguish hospitals’ performance.

The noise variance can be estimated through the risk adjustment models using the predicted risks of discharges. The signal variance is more difficult to estimate, and we use Morris’ method. Morris’ method\(^59\) is calculated through the empirical Bayes model (see Chapter II, section E.3.6). It uses an iterative method to estimate the signal variance under the assumptions that the hospital IQIs are normally distributed within each hospital and the true hospital quality of care is also normally distributed among hospitals. There are two main issues with this method. The first issue is that the normal distribution assumption may not be true for certain hospital IQIs. It is possible that the iterative method may lead to a negative signal variance. So, when the second issue occurs, a full Bayes-based method is used which can be implemented with the “PROC MCMC” procedure in SAS. Under this approach, we assume the prior for the true hospital quality of care follows a Gamma distribution, which gives more flexibility compared to the symmetric normal distribution. We use a non-informative prior for both parameters for the Gamma distribution and let the data estimate all the parameters, including the signal variance, through posterior distributions.

Hospitals present a varying number of denominators (i.e., eligible discharges) in the QI calculations. Statistically, this means that each hospital contributes a different amount of information than the next hospital; large hospitals with thousands of discharges contribute more information than small hospitals with, say, fewer than a hundred discharges. In the empirical Bayes framework, the hospital means (i.e., their “true” QI rates) are distributed around the reference population mean. The extent to which the hospital means are spread about the reference population mean is characterized by the signal variance. To calculate the signal variance, the reference population mean may account for the different amounts of information from large and small hospitals through a weighting scheme that places more weight on large hospitals and less weight on small hospitals. This distinction from the unweighted mean depends on the specific interpretation of QI results—that is, whether or not hospitals should be distinguished by their case sizes (i.e., denominators) in the estimation of the empirical Bayes smoothing model.

F.7 Evaluate Models

Two desirable qualities of risk adjustment models are that they discriminate well between discharge records that experience the outcome of interest and those that do not and that they are well calibrated, predicting that the outcome will occur in approximately the right proportions, over a wide range of predicted probability.

F.7.1 Discrimination

One common scalar measure of logistic regression discrimination is the c-statistic. This may be calculated by computing the area under the Receiver Operating Characteristic (ROC) curve. Alternatively, it may be calculated by forming every possible pair in a dataset in which one member of the pair is a discharge with the outcome of interest and the other member is a discharge without the outcome of interest. The c-statistic is the proportion of such pairs in which the predicted probability for the member with the outcome of interest is higher than the predicted probability for the other record. Pairs with tied probabilities each contribute one-half to the numerator and denominator of the proportion. A c-statistic of 0.5 is the same discrimination performance as flipping a coin. A c-statistic of 1.0 indicates perfect discrimination. Hosmer and Lemeshow60 have coined three widely adopted labels for discrimination performance based on the c-statistic:

- \(0.70 \leq \text{c-statistic} < 0.80\) indicates acceptable discrimination
- \(0.80 \leq \text{c-statistic} < 0.90\) indicates excellent discrimination
- \(0.90 \leq \text{c-statistic}\) indicates outstanding discrimination

The c-statistics for the AHRQ QI risk adjustment models are published on the AHRQ QI website in the Parameter Estimates Document: (see Chapter III.B). The c-statistics alone should not be used to indicate if a risk adjustment model is valid or not. Instead, c-statistics are used to compare different models or compare models from different years to make sure the model selection performs as expected to minimize the potential overfitting and underfitting. AHRQ does not recommend using a threshold to disqualify the risk adjustment model just based on c-statistics.

F.7.2 Calibration

Calibration often is described by sorting the dataset on the basis of predicted probability and dividing it into deciles of risk. It is meaningful to compare the proportion of records in each decile that were observed to have the outcome of interest with the proportion of records that are expected to have that outcome. Hosmer and Lemeshow’s61 logistic regression goodness-of-fit statistic is based on a chi-square test statistic calculated using the observed and expected counts across the 10 deciles. To assess whether there is over or under-prediction in high or low-risk discharges, it is suggested to create a plot of the

observed rates and expected rates by deciles or a calibration belt. As the sample size in HCUP data is typically very large, using the p-value based on Hosmer and Lemeshow chi-square test statistics is not advised, as it often results in significant results regardless.

F.7.3 Model evaluation on a test dataset

For hospital level QIs, one of the objectives for the feature selection task is to evaluate model performance on a test sample while minimizing the potential risks of both over and under fitting. Beginning with v2023, to evaluate the predictive performance of the model, the complete reference population is randomly divided into a training dataset (80% of the total reference population) and a test dataset (20% of the total reference population).

The training dataset is utilized for feature selection, and subsequently, the selected model is evaluated using the test dataset to measure its calibration and discrimination power. The C-statistics provided in the public parameter estimate files for hospital level QIs are derived from the test dataset and accurately reflect the underlying "predictive" performance regarding discrimination. Note that statistics of model fit for v2023 reflect this approach, whereas as measures of model performance for previous versions were “trained” and also “tested” on the full reference population.

G. Composite Development

G.1 Area-Level Composites
The area-level composite QI are unweighted combinations of conceptually related component QI. The area-level QI composites are calculated as the count of discharges qualifying for any of the component indicators over the total population for all component measures. For example, the numerator for PQI 93 includes all records that qualify for any diabetes-related PQI (PQI 01, PQI 03, PQI 14, or PQI 16) over all adults 18+ years residing in an area. Observed and risk-adjusted rates for the area-level composites are computed using the same methods described for the individual component area-level QI.

G.2 Hospital-Level Composites
The hospital-level composites are all weighted composites (i.e., IQI 90, 91, PSI 90). They are calculated as the weighted average of the component indicator smoothed rate for each component indicator (composite rate = component weight * hospital smoothed component rate). All weighted composites use weights based on volume and reliability, except PSI 90 which uses weights based on volume and harm. See Section G.3.1 for details on the weight calculation.

G.3 Special Case: Hospital-Level Composite – PSI 90

G.3.1 Calculating Harms Weights for PSI 90 Composite

The PSI composite combines smoothed (empirical Bayes shrunk) standardized morbidity ratios (observed/expected ratios) from selected AHRQ PSIs to provide a composite that gives an overview of

hospital-level quality as it relates to a set of hospital-related events that are associated with harmful outcomes for patients. In past versions of the AHRQ QI software PSI 90 (v5.0 and earlier) the weight that each component received was proportional to the volume of the events in the component indicator observed in the HCUP reference population (i.e., numerator weighting). The re-weighting of PSI 90 was undertaken to improve the validity and reliability of the composite by refining the component indicators that are included in the composite and aligning the weights with the burden of harm (risk of harmful outcomes) that each component contributes in a reference population. In other words, the weights account for both the magnitude of harm associated with a patient safety event as well as the volume (number of cases) of the event, whereas in past iterations, only the volume was used for weighting.64

The weights are defined and calculated as follows:

Each component PSI indicator, q, which is part of PSI 90 receives a weight defined by:

\[
\text{weight}_q = \frac{\text{volume}_q \sum_{h=1}^{H} \text{harm}_{qh} \text{disutility}_{qh}}{\sum_{q=1}^{Q} \text{volume}_q \sum_{h=1}^{H} \text{harm}_{qh} \text{disutility}_{qh}}
\]

Where:

Q is the total number of component quality indicators, q, in PSI 90.

H is the total number of outcome types (harms), h, related to each component indicator.

\text{volume} is the numerator count, or the number of total QI events within the component indicator in the reference population.

\text{harm} is the excess risk (risk difference) of each type of outcome (i.e., harm) within each component indicator estimated from a model comparing people with PSI events to those without PSI events in an “at risk” cohort.

\text{disutility} is the complement of a utility weight (1-utility_wt) assigned to each excess occurrence of each type of outcome within each component indicator.

For each component indicator in the PSI 90 composite, two sets of values need to be computed or estimated. The first is the excess risk of the outcomes (risk difference) that may occur as a consequence of the patient safety event associated with the indicator. The second is the set of numerator weights.

Although estimates of disutility are required to incorporate disparate types of harms, the values of disutility are treated as not varying.

G.3.2 Harms Included

Harms weights were developed specifically for the AHRQ QIs. Based on literature review and expert opinion from 13 clinical specialists in surgery, internal medicine, nephrology, trauma and emergency care, critical care, nursing, and home healthcare, 37 downstream harms associated with 10 PSIs were defined (See Appendix D). For some PSIs, harms were included for up to one year after the PSI event (such as mortality, skilled nursing facility days, and outpatient dialysis). An expert panel then ranked the harms. These rankings, along with information from relevant studies in the literature, were then used to assign disutilities, or a measure of the severity of the adverse effects, associated with each of the harms.

G.3.3 Estimating Excess Harms

The estimates of excess harms that go into the harm weighting aim to answer the question, how much more likely is a particular harmful outcome in a population of patients who experience a PSI event than in a population of patients who were at risk for the event, but did not experience the event? In other words, what is the risk difference between PSI events and non-events in an at-risk population? These models require the use of longitudinal data that contain information about morbidity and mortality following a PSI event.

Excess harms were modeled using CMS Inpatient and Outpatient Medicare Fee-For-Service data in the 100% standard analytical files (SAF). A separate cohort sample was defined for each component indicator based on the sample of 2012 patient records who were “at risk” (i.e., in the denominator) for the component QI indicator. Index events were identified as patient discharges in 2012 with an eligible QI PSI component event. The comparison group was composed of at-risk patients (as defined by the component PSI specification) who did not experience the PSI event. The 2013 data were used solely to provide follow-up information about harms. The follow-up period was one year from the discharge date of the index hospitalization. For each component indicator, the independent variable was the presence or absence of the component PSI event. Separate models were fitted for each harm outcome. Outcomes varied among the component PSIs. Example outcomes included all-cause 30-day and 180-day mortality, hospital readmissions, condition-specific complications, and total length of hospital stay (potentially including the postoperative period during the index admission plus all qualifying readmissions within the ascertainment window). The selection of outcomes relied on the underlying conceptual model for the component indicator, the available data elements in the CMS data, and the availability of a meaningful utility weight.

Confounding may arise if factors associated with the probability of experiencing a QI event are also related to the probability of experiencing a consequence (outcome) from the QI event. To account for potential confounding in these analyses, for each component indicator, we used a propensity score weighting approach. The propensity score (PS) was the predicted value (i.e., expected value) from the QI’s risk adjustment model, which accounted for age and sex as well as pre-existing complications and comorbidities. We used a version of propensity weighting suitable for estimating the average treatment effect on the treated (ATT). In other words, we estimated the effect of the safety event on harms among patients who suffer the safety event. Patient stays with the safety event (QI=1) received a weight of one and at-risk patient stays without a safety event (QI=0) received a weight of PS/(1-PS).
Another potential source of confounding may arise from patients who experience multiple PSI events that share common outcomes (e.g., mortality). In this scenario, it is necessary to estimate independent associations between PSI events and outcomes. When multiple component PSIs are related to the same outcome, we included the other component PSIs in the model as covariates for the excess harm effect we were estimating. For example, if we are estimating the excess risk of renal failure in PSI 13, we would use propensity weights appropriate for PSI 13 and would also include PSI 10 as an indicator covariate in the model.

G.3.4 Harm Utility Values

To combine disparate harms into a single overall weight, we applied disutility values that scale the relative utility of health states from a patient perspective. Utilities were anchored at zero for mortality and one for no harmful health outcome. When available, intermediate utility values were drawn from studies that examine patient preference for various health states (e.g., standard gamble studies). When literature-based utility values were not available for patient preference, we used an expert panel of clinicians (physicians and nurses) to rank a list of health states that they have seen in their patients. We applied a regression process to interpolate utility values based on the consensus ranking of the health states. Disutility was calculated as the complement of utility (i.e., 1-utility).

G.3.5 Final PSI 90 Weight

The final PSI 90 weights were computed using the excess harm and disutility values derived from the procedures above and combined with information about the volume of the PSI 90 components in the 2019 reference population. The v2023 AHRQ QI software contains weights for PSI 90 based on 10 component PSI indicators (Table 17). The component weights are re-scaled to sum to one.

Table 17. Weights of PSI 90 Component Indicators, v2023

<table>
<thead>
<tr>
<th>Indicator abbreviation</th>
<th>Indicator name</th>
<th>Harm weight</th>
<th>Volume weight</th>
<th>Component weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSI 03</td>
<td>Pressure Ulcer Rate</td>
<td>0.3080</td>
<td>0.1155</td>
<td>0.1809</td>
</tr>
<tr>
<td>PSI 06</td>
<td>Iatrogenic Pneumothorax Rate</td>
<td>0.1381</td>
<td>0.0464</td>
<td>0.0326</td>
</tr>
<tr>
<td>PSI 08</td>
<td>In-Hospital Fall-Associated Fracture Rate</td>
<td>0.1440</td>
<td>0.0669</td>
<td>0.0490</td>
</tr>
<tr>
<td>PSI 09</td>
<td>Postoperative Hemorrhage or Hematoma Rate</td>
<td>0.0570</td>
<td>0.1347</td>
<td>0.0390</td>
</tr>
<tr>
<td>PSI 10</td>
<td>Postoperative Acute Kidney Injury Requiring Dialysis Rate</td>
<td>0.3584</td>
<td>0.0281</td>
<td>0.0512</td>
</tr>
<tr>
<td>PSI 11</td>
<td>Postoperative Respiratory Failure Rate</td>
<td>0.2219</td>
<td>0.2097</td>
<td>0.2366</td>
</tr>
<tr>
<td>PSI 12</td>
<td>Perioperative Pulmonary Embolism or Deep Vein Thrombosis (PE/DVT) Rate</td>
<td>0.1557</td>
<td>0.2195</td>
<td>0.1738</td>
</tr>
<tr>
<td>PSI 13</td>
<td>Postoperative Sepsis Rate</td>
<td>0.3102</td>
<td>0.1244</td>
<td>0.1963</td>
</tr>
<tr>
<td>PSI 14</td>
<td>Postoperative Wound Dehiscence Rate</td>
<td>0.1441</td>
<td>0.0227</td>
<td>0.0166</td>
</tr>
</tbody>
</table>
Indicator abbreviation | **Indicator name** | **Harm weight** | **Volume weight** | **Component weight**
--- | --- | --- | --- | ---
PSI 15 | Abdominopelvic Accidental Puncture or Laceration Rate | 0.1474 | 0.0322 | 0.0241

These harm weights are based on versions of PSI 08 from v2022 and earlier, in that they are specific to hip fractures. The corresponding harm weights for other types of hospital-associated fractures are likely to differ, because other types of fractures require different treatment from hip fractures. Revised harm weights will be estimated in the near future.

G.3.6 Estimating PSI 90 Variance

The within-hospital variance for the PSI 90 Composite characterizes the statistical uncertainty around the result that arises from sampling at the discharge level. The hospital’s discharges in PSI 90 calculation are assumed to have been drawn from an infinite population of similar, eligible discharges; the random differences between sample and population are what constitutes the sampling error for within-hospital variance. For a component indicator, the within-hospital variance is the noise variance associated with that indicator; see section F.4 of Quality Indicator Empirical Methods.

The PSI 90 Composite is a weighted sum of the component indicators. Essentially, the AHRQ QI software computes a within-hospital PSI 90 variance based on this weighted sum; the variance calculation can be derived from the signal variance of the component PSI (in the reference population), final PSI 90 weight (specific to the measure’s definition; see section G.3.5), and the hospital’s reliability weight. This calculation is based on the assumption of independence among the component PSIs – that is, component PSI rates are uncorrelated within hospitals.

From the statistical perspective, the resulting PSI 90 Composite variance may be sensitive to the assumption of independence across component PSIs. In other words, correlated PSIs would contribute less information in the composite value (than if they were independent), which indicates that the variance would be underestimated. To assess the sensitivity of the variance, the analyst could apply bootstrap methods to simulate the within-hospital variance-covariance of component indicators in the PSI 90 Composite. In developing and testing a bootstrapped approach, the size of the reference population in the SID and the requisite number of bootstrap iterations should be taken into account.

H. Empirical Testing – Evaluating AHRQ QI Specifications and Risk Models

The AHRQ QIs are routinely evaluated to ensure continued scientific soundness. This section describes selected routine testing. In addition to the routine testing, additional analyses are conducted on an ad hoc basis to assess specific aspects of indicator performance as part of the continuous improvement cycle. Testing is completed using the HCUP SID data reference populations, meaning that all testing reflects indicator performance in an all-payer population.

H.1 Reliability

Broadly defined reliability refers to the consistency of a measure. In the context of quality measures, reliability can encompass multiple aspects of constancy:

1. Is a measure consistent when measured by multiple raters or using differing sets of data within the same time period? (inter-rater reliability)

2. Is a measure consistent when measured multiple times within a time period for which the measure is not expected to change? (test-retest reliability)
3. Is performance consistent when measured using different methods? (inter-method reliability)
4. Are measures within a scale or composite consistent? (internal reliability)
5. Does the measure consistently distinguish one measured entity from another? (signal-to-noise)

These types of reliability may be applied to the performance score itself or the categorization of the measured entity, such as the identification outlier hospitals. Each reliability metric describes a distinct aspect; different measure applications may favor different reliability.

To calculate the reliability weight, the QI modules use the signal and noise variances. These estimates come from the empirical Bayes shrinkage model that characterizes the distribution of QI rates between and within hospitals. In reliability testing, the overall reliability of the QI to distinguish hospitals on the basis of their underlying quality can be calculated as a weighted sum of the hospital-level reliability weights. This diagnostic would characterize the amount of total variation in QI rates that can be explained by the true quality of hospitals (i.e., the signal-to-noise ratio).

Alternative methods for testing reliability use different statistical frameworks. For example, a reliability analysis can be based on a beta-binomial model that posits an underlying beta distribution for the true QI rates and a binomial for the distribution of discharges within a hospital.65 Other bootstrap-based methods such as test-retest reliability could be applied, whereby the reference discharge population is resampled in split halves to assess the agreement (or correlation) in QI rates between them; this approach would be computationally intensive.

Standards for reliability can differ by sources and purpose. For example, a reliability analysis for the Centers for Medicare & Medicaid Services (CMS) suggested a lower limit for “moderate” reliability at 0.4.66 In addition to statistical considerations, reporting programs need to consider implications of minimum case sizes in the calculation of any quality measure, in order to ensure that reliability standards are met.

H.2 Validity

Validity testing is tailored for each measure. For instance, for AMI mortality testing examines the relationship of hospital-level rates with AMI process measures and readmission rates. The PQIs validity testing examines the relationship of county level rates with county-level access to care measures (e.g., insurance coverage, physician density), poverty and community characteristics that contribute to hospital utilization and access to care.

Two other types of validity have been assessed historically but this testing is not conducted routinely.

1. All measures have been assessed for face validity by at least one clinical expert panel using the modified RAND Appropriateness Method (i.e., nominal group method). These panels recommend refinements to indicator specifications and rate the overall usefulness of the indicators.

2. For the patient safety measures (PSI and PDI), chart review has been used to assess criterion validity, namely positive predictive value, negative predictive value, sensitivity and specificity of the coding to detect actual events. These studies were conducted using ICD-9-CM data by both research members of the QI development team and outside researchers. However, these studies should be viewed in the context of changes to the ICD-9-CM coding structure since the studies were conducted. In many cases, these studies informed improvements to the PSI specifications and/or to the ICD-9-CM coding structure or instructions that have improved the validity.

H.3 Risk Model Performance
Risk models are evaluated using tests of discrimination (how well the risk adjustment model distinguishes events from non-events) and calibration. The measure of discrimination is the c-statistic, also known as the area under a receiver operating characteristic (ROC) curve. The c-statistic is computed by assigning each observation a predicted probability of the outcome from the risk adjustment model, based on the value of the observed covariates and the parameter estimates from the risk adjustment model. Two copies of the dataset are sorted, first from highest to lowest predicted probability and second from lowest to highest predicted probability. Random sampling is used to create a set of paired observations. Pairs that consist of one event and one non-event (discordant pairs) are kept and concordant pairs are discarded. The c-statistic represents the proportion of discordant pairs of observations for which the observation with the event had a higher predicted probability from the risk adjustment model than the observation without the event. Common “goodness of fit” tests are not used because these tests tend to be uninformative with large samples.

The metric for calibration is the evaluation of how closely observed and predicted rates compare across deciles of the predicted rate. This analysis splits the sample into deciles based on predicted rates, and then compares these rates with the observed rates for the population in each decile. A well calibrated model, or one that does not over or under-estimate risk, will have comparable observed and predicted rates across the risk spectrum.

68 Most recently used by AHRQ QI Expert Panel Workgroup in summer of 2018
Chapter IV. References

Chapter V. Appendices

Appendix A. Other Helpful Documents

Readers may wish to access additional QI-related documentation. The following are some helpful examples:

AHRQ QI Technical Specifications

- PQI: https://qualityindicators.ahrq.gov/measures/PQI_TechSpec
- PQE: https://qualityindicators.ahrq.gov/measures/ED_PQI_TechSpec
- IQI: https://qualityindicators.ahrq.gov/measures/IQI_TechSpec
- PSI: https://qualityindicators.ahrq.gov/measures/PSI_TechSpec
- PDI: https://qualityindicators.ahrq.gov/measures/PDI_TechSpec

AHRQ QI Benchmark Data Tables

AHRQ QI Parameter Estimates Tables

AHRQ Quality Indicators
Quality Indicator Empirical Methods, v2023

- IQI:

- PSI:

- PDI:

AHRQ QI Population Documentation File (used with area-level indicators)

AHRQ QI Software Instructions

- SAS:

- WinQI:

- SAS ED PQI Beta v2023:

- WinQI ED PQI Beta v2023:

AHRQ QI Software Release Notes

- SAS:

- WinQI:
 https://qualityindicators.ahrq.gov/Downloads/Software/WinQI/V2023/AHRQ_WinQI_v2023_Software_Rel_Notes.pdf

- ED PQI Beta v2023:

AHRQ QI Log of Coding Updates and Revisions

- PQI:

AHRQ HCUP Documentation (to better understand the source of the reference population)
- SID: http://www.hcup-us.ahrq.gov/db/state/siddbdocumentation.jsp
- SEDD: https://hcup-us.ahrq.gov/db/state/seeddbdocumentation.jsp
Appendix B. Comprehensive List of Quality Indicators

Appendix Table 1. Area-Level Quality Indicators

<table>
<thead>
<tr>
<th>Preventive Quality Indicators</th>
<th>Preventive Quality Emergency Department Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQI 01 Diabetes Short-Term Complications Admission Rate</td>
<td>PQE 01 ED Visits for Non-Traumatic Dental Conditions</td>
</tr>
<tr>
<td>PQI 03 Diabetes Long-Term Complications Admission Rate</td>
<td>PQE 02 ED Visits for Chronic Ambulatory Care Sensitive Conditions</td>
</tr>
<tr>
<td>PQI 05 Chronic Obstructive Pulmonary Disease (COPD) or Asthma in Older Adults Admission Rate</td>
<td>PQE 03 ED Visits for Acute Ambulatory Care Sensitive Conditions</td>
</tr>
<tr>
<td>PQI 07 Hypertension Admission Rate</td>
<td>PQE 04 ED Visits for Asthma</td>
</tr>
<tr>
<td>PQI 08 Heart Failure Admission Rate</td>
<td>PQE 05 ED Visits for Back Pain</td>
</tr>
<tr>
<td>PQI 11 Community-Acquired Pneumonia Admission Rate</td>
<td></td>
</tr>
<tr>
<td>PQI 12 Urinary Tract Infection Admission Rate</td>
<td></td>
</tr>
<tr>
<td>PQI 14 Uncontrolled Diabetes Admission Rate</td>
<td></td>
</tr>
<tr>
<td>PQI 15 Asthma in Younger Adults Admission Rate</td>
<td></td>
</tr>
<tr>
<td>PQI 16 Lower-Extremity Amputation among Patients with Diabetes Rate</td>
<td></td>
</tr>
<tr>
<td>PQI 90 Prevention Quality Overall Composite</td>
<td></td>
</tr>
<tr>
<td>PQI 91 Prevention Quality Acute Composite</td>
<td></td>
</tr>
<tr>
<td>PQI 92 Prevention Quality Chronic Composite</td>
<td></td>
</tr>
<tr>
<td>PQI 93 Prevention Quality Diabetes Composite</td>
<td></td>
</tr>
</tbody>
</table>

Pediatric Quality Indicators

<table>
<thead>
<tr>
<th>Pediatric Quality Indicators</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PDI 14 Asthma Admission Rate</td>
<td></td>
</tr>
<tr>
<td>PDI 15 Diabetes Short-Term Complications Admission Rate</td>
<td></td>
</tr>
<tr>
<td>PDI 16 Gastroenteritis Admission Rate</td>
<td></td>
</tr>
<tr>
<td>PDI 18 Urinary Tract Infection Admission Rate</td>
<td></td>
</tr>
</tbody>
</table>
Pediatric Quality Indicators

<table>
<thead>
<tr>
<th>PDI 90</th>
<th>Pediatric Quality Overall Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDI 91</td>
<td>Pediatric Quality Acute Composite</td>
</tr>
<tr>
<td>PDI 92</td>
<td>Pediatric Quality Chronic Composite</td>
</tr>
</tbody>
</table>

Appendix Table 2. Hospital-Level Quality Indicators

Mortality Indicators

<table>
<thead>
<tr>
<th>IQI 08</th>
<th>Esophageal Resection Mortality Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>IQI 09</td>
<td>Pancreatic Resection Mortality Rate</td>
</tr>
<tr>
<td>IQI 11</td>
<td>Abdominal Aortic Aneurysm (AAA) Repair Mortality Rate</td>
</tr>
<tr>
<td>IQI 12</td>
<td>Coronary Artery Bypass Graft (CABG) Mortality Rate</td>
</tr>
<tr>
<td>IQI 15</td>
<td>Acute Myocardial Infarction (AMI) Mortality Rate</td>
</tr>
<tr>
<td>IQI 16</td>
<td>Heart Failure Mortality Rate</td>
</tr>
<tr>
<td>IQI 17</td>
<td>Acute Stroke Mortality Rate</td>
</tr>
<tr>
<td>IQI 18</td>
<td>Gastrointestinal Hemorrhage Mortality Rate</td>
</tr>
<tr>
<td>IQI 19</td>
<td>Hip Fracture Mortality Rate</td>
</tr>
<tr>
<td>IQI 20</td>
<td>Pneumonia Mortality Rate</td>
</tr>
<tr>
<td>IQI 30</td>
<td>Percutaneous Coronary Intervention (PCI) Mortality Rate</td>
</tr>
<tr>
<td>IQI 31</td>
<td>Carotid Endarterectomy Mortality Rate</td>
</tr>
<tr>
<td>IQI 90</td>
<td>Mortality for Selected Inpatient Procedures</td>
</tr>
<tr>
<td>IQI 91</td>
<td>Mortality for Selected Inpatient Conditions</td>
</tr>
</tbody>
</table>

Utilization Indicators

<table>
<thead>
<tr>
<th>IQI 21</th>
<th>Cesarean Delivery Rate, Uncomplicated</th>
</tr>
</thead>
<tbody>
<tr>
<td>IQI 22</td>
<td>Vaginal Birth After Cesarean (VBAC) Delivery Rate, Uncomplicated</td>
</tr>
<tr>
<td>IQI 33</td>
<td>Primary Cesarean Delivery Rate, Uncomplicated</td>
</tr>
</tbody>
</table>

Patient Safety Indicators

<table>
<thead>
<tr>
<th>PSI 02</th>
<th>Death Rate in Low-Mortality Diagnosis Related Groups (DRGs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSI 03</td>
<td>Pressure Ulcer Rate</td>
</tr>
<tr>
<td>PSI 04</td>
<td>Death Rate among Surgical Inpatients with Serious Treatable Complications</td>
</tr>
</tbody>
</table>
Patient Safety Indicators

<table>
<thead>
<tr>
<th>PSI 05</th>
<th>Retained Surgical Item or Unretrieved Device Fragment Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSI 06</td>
<td>Iatrogenic Pneumothorax Rate</td>
</tr>
<tr>
<td>PSI 07</td>
<td>Central Venous Catheter-Related Blood Stream Infection Rate</td>
</tr>
<tr>
<td>PSI 08<sup>b</sup></td>
<td>In-Hospital Fall-Associated Fracture Rate</td>
</tr>
<tr>
<td>PSI 09</td>
<td>Postoperative Hemorrhage or Hematoma Rate</td>
</tr>
<tr>
<td>PSI 10</td>
<td>Postoperative Acute Kidney Injury Requiring Dialysis Rate</td>
</tr>
<tr>
<td>PSI 11</td>
<td>Postoperative Respiratory Failure Rate</td>
</tr>
<tr>
<td>PSI 12</td>
<td>Perioperative Pulmonary Embolism or Deep Vein Thrombosis Rate</td>
</tr>
<tr>
<td>PSI 13</td>
<td>Postoperative Sepsis Rate</td>
</tr>
<tr>
<td>PSI 14<sup>a</sup></td>
<td>Postoperative Wound Dehiscence Rate</td>
</tr>
<tr>
<td>PSI 15</td>
<td>Abdominopelvic Accidental Puncture or Laceration Rate</td>
</tr>
<tr>
<td>PSI 17</td>
<td>Birth Trauma Rate – Injury to Neonate</td>
</tr>
<tr>
<td>PSI 18</td>
<td>Obstetric Trauma Rate – Vaginal Delivery with Instrument</td>
</tr>
<tr>
<td>PSI 19</td>
<td>Obstetric Trauma Rate – Vaginal Delivery without Instrument</td>
</tr>
<tr>
<td>PSI 90</td>
<td>Patient Safety and Adverse Events Composite</td>
</tr>
</tbody>
</table>

Pediatric Quality Indicators

<table>
<thead>
<tr>
<th>NQI 03</th>
<th>Neonatal Blood Stream Infection Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDI 01</td>
<td>Accidental Puncture or Laceration Rate</td>
</tr>
<tr>
<td>PDI 05</td>
<td>Iatrogenic Pneumothorax Rate</td>
</tr>
<tr>
<td>PDI 08</td>
<td>Postoperative Hemorrhage or Hematoma Rate</td>
</tr>
<tr>
<td>PDI 09</td>
<td>Postoperative Respiratory Failure Rate</td>
</tr>
<tr>
<td>PDI 10</td>
<td>Postoperative Sepsis Rate</td>
</tr>
<tr>
<td>PDI 12</td>
<td>Central Venous Catheter-Related Blood Stream Infection Rate</td>
</tr>
<tr>
<td>PDI 14</td>
<td>Asthma Admission Rate</td>
</tr>
<tr>
<td>PDI 15</td>
<td>Diabetes Short-Term Complications Admission Rate</td>
</tr>
<tr>
<td>PDI 16</td>
<td>Gastroenteritis Admission Rate</td>
</tr>
<tr>
<td>PDI 18</td>
<td>Urinary Tract Infection Admission Rate</td>
</tr>
<tr>
<td>PDI 90</td>
<td>Pediatric Quality Overall Composite</td>
</tr>
<tr>
<td>Indicator</td>
<td>POA-Dependent Quality Indicator</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>PSI 02</td>
<td></td>
</tr>
<tr>
<td>PSI 03</td>
<td>X</td>
</tr>
<tr>
<td>PSI 04</td>
<td></td>
</tr>
<tr>
<td>PSI 05</td>
<td>X</td>
</tr>
<tr>
<td>PSI 06</td>
<td>X</td>
</tr>
<tr>
<td>PSI 07</td>
<td>X</td>
</tr>
<tr>
<td>PSI 08</td>
<td>X</td>
</tr>
<tr>
<td>PSI 09</td>
<td>X</td>
</tr>
<tr>
<td>PSI 10</td>
<td>X</td>
</tr>
<tr>
<td>PSI 11</td>
<td>X</td>
</tr>
<tr>
<td>PSI 12</td>
<td>X</td>
</tr>
<tr>
<td>PSI 13</td>
<td>X</td>
</tr>
<tr>
<td>PSI 14</td>
<td>X</td>
</tr>
<tr>
<td>PSI 15</td>
<td>X</td>
</tr>
<tr>
<td>PSI 17</td>
<td></td>
</tr>
<tr>
<td>PSI 18</td>
<td></td>
</tr>
<tr>
<td>PSI 19</td>
<td></td>
</tr>
<tr>
<td>PSI 90</td>
<td>X</td>
</tr>
<tr>
<td>NQI 03</td>
<td>X</td>
</tr>
<tr>
<td>PDI 01</td>
<td>X</td>
</tr>
<tr>
<td>PDI 05</td>
<td>X</td>
</tr>
<tr>
<td>PDI 08</td>
<td>X</td>
</tr>
<tr>
<td>Indicator</td>
<td>POA-Dependent Quality Indicator</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>PDI 09</td>
<td>X</td>
</tr>
<tr>
<td>PDI 10</td>
<td>X</td>
</tr>
<tr>
<td>PDI 12</td>
<td>X</td>
</tr>
<tr>
<td>PDI 14</td>
<td></td>
</tr>
<tr>
<td>PDI 15</td>
<td></td>
</tr>
<tr>
<td>PDI 16</td>
<td></td>
</tr>
<tr>
<td>PDI 18</td>
<td></td>
</tr>
<tr>
<td>PDI 18</td>
<td></td>
</tr>
<tr>
<td>PDI 90</td>
<td></td>
</tr>
<tr>
<td>PDI 91</td>
<td></td>
</tr>
<tr>
<td>PDI 92</td>
<td></td>
</tr>
</tbody>
</table>
Appendix C. List of Risk Factors for Area-Level Quality Indicator Modules Appendix

Appendix Table 4. Risk Factors by Module at the Area-Level

<table>
<thead>
<tr>
<th>Data Element</th>
<th>PQI</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SEX</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>POVERTY</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Appendix D. Patient Harms Captured in the AHRQ Patient Safety and Adverse Events Composite

Appendix Table 5. Description of Patient Harms Captured in the AHRQ Patient Safety and Adverse Events Composite

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Description of Events Captured</th>
<th>Applicable Patient Safety Indicator (PSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure ulcer treatment</td>
<td>Debridement of a pressure ulcer and/or surgical skin flap procedure during the hospitalization when the pressure ulcer developed, due to tissue damage.</td>
<td>PSI 03</td>
</tr>
<tr>
<td>180-day hospital readmission for a pressure ulcer-related complication</td>
<td>Readmission to an acute care hospital within 30 to 180 days of discharge after a PSI 03 event for any of the following conditions that were present on admission: recurrent pressure ulcer, cellulitis, pyoderma, infection, bacteremia, sepsis, acute or chronic osteomyelitis, septic arthritis, necrotizing fasciitis, gangrene, or flap failure.</td>
<td>PSI 03</td>
</tr>
<tr>
<td>30-day all-cause mortality</td>
<td>Death due to any cause within 30-days of the discharge after a PSI triggering event.</td>
<td>PSI 06, PSI 08®, PSI 09, PSI 15</td>
</tr>
<tr>
<td>30-day all-cause readmission</td>
<td>Readmission to an acute care hospital within 30 days of the discharge after a PSI triggering event (excluding any readmissions categorized separately below).</td>
<td>All</td>
</tr>
<tr>
<td>180-day all-cause mortality</td>
<td>Death due to any cause within 30 to 180 days of the discharge after the PSI triggering event.</td>
<td>PSI 03, PSI 10, PSI 11, PSI 12, PSI 13, PSI 14</td>
</tr>
<tr>
<td>90-day nonsurgical hip fracture complication</td>
<td>Hospital readmission within 30 to 90 days of the discharge after a PSI 08 event for a mechanical or infectious hip fracture complication not requiring surgery.</td>
<td>PSI 08®</td>
</tr>
<tr>
<td>Hip reoperation within 90 days</td>
<td>Hospital readmission for reoperation on the hip within 90 days of the discharge after a PSI 08 event.</td>
<td>PSI 08®</td>
</tr>
<tr>
<td>Avascular necrosis</td>
<td>Admission to the hospital within 30 to 365 days of the discharge after a PSI 08 event with aseptic or avascular necrosis.</td>
<td>PSI 08®</td>
</tr>
<tr>
<td>Anoxic brain damage or shock</td>
<td>Development of brain (cerebral) anoxia and or shock associated with a hemorrhage or hematoma event.</td>
<td>PSI 09</td>
</tr>
<tr>
<td>Acute renal failure requiring dialysis</td>
<td>Development of acute kidney injury/failure (stage V) requiring dialysis while hospitalized after a PSI triggering event.</td>
<td>PSI 09, PSI 13</td>
</tr>
<tr>
<td>Outcome</td>
<td>Description of Events Captured</td>
<td>Applicable Patient Safety Indicator (PSI)</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Dialysis post discharge for up to 6 months</td>
<td>Ongoing need for dialysis for up to 6 months after discharge following a PSI event.</td>
<td>PSI 10</td>
</tr>
<tr>
<td>1-year all-cause hospital readmission</td>
<td>All cause hospital readmission within 30 to 365 days of the discharge after a PSI 10 triggering event.</td>
<td>PSI 10</td>
</tr>
<tr>
<td>Tracheostomy</td>
<td>Received a tracheostomy due to extended need for mechanical ventilation and/or a complication from intubation.</td>
<td>PSI 11</td>
</tr>
<tr>
<td>6-month hospital readmission for a bleeding complication</td>
<td>Hospital readmission within 30 to 180 days of the discharge due to a bleeding complication related to anticoagulation.</td>
<td>PSI 12</td>
</tr>
<tr>
<td>Emergency department visits within 180 days for a thrombotic complication</td>
<td>Emergency department visits related to a thrombotic event such as pulmonary embolus, deep vein thrombosis, or postphlebitic syndrome within 180 days of discharge after a PSI 12 event.</td>
<td>PSI 12</td>
</tr>
<tr>
<td>180-day hospital readmission for an enterocutaneous fistula</td>
<td>Readmitted to an acute care hospital for intra-abdominal abscess or enterocutaneous fistula within 30 to 180 days of the discharge after a PSI 14 event.</td>
<td>PSI 14</td>
</tr>
<tr>
<td>180-day hospital readmission for an incisional hernia</td>
<td>Readmitted to an acute care hospital (including observational stays) for incisional hernia or reclosure of postoperative disruption of the abdominal wall within 30 to 180 days of the discharge after a PSI 14 event.</td>
<td>PSI 14</td>
</tr>
<tr>
<td>180-day hospital readmission for an intra-abdominal abscess or enterocutaneous fistula</td>
<td>Development of an intra-abdominal abscess or enterocutaneous fistula up to 30 to 180 days of discharge after a PSI 15 event.</td>
<td>PSI 15</td>
</tr>
<tr>
<td>Excess hospital days</td>
<td>Excess hospital length of stay (in days) associated with a PSI event.</td>
<td>All</td>
</tr>
<tr>
<td>Long-term skilled nursing facility stay</td>
<td>Long-term skilled nursing facility stays that are 26 consecutive days or longer in a skilled nursing facility or long-term care facility.</td>
<td>All</td>
</tr>
<tr>
<td>Short-term skilled nursing home days</td>
<td>Long-term skilled nursing facility stays that are 26 consecutive days or longer in a skilled nursing facility or long-term care facility.</td>
<td>All</td>
</tr>
</tbody>
</table>

* PSI 08 for v2022 and earlier was specific to hip fractures. With v2023, PSI 08 is expanded to include other types of hospital-associated fractures. Because the corresponding harm weights for other types of hospital-associated fractures are likely to differ from the harm weights based on hip fractures alone, revised harm weights will be estimated in the near future.